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PREFACE |

Solution-adaptive grid techniques are essential to the attainment of practical,
user-friendly, computational fluid dynamics (CFD) applications. In this 3-day
workshop, experts gathered together to describe state-of-the-art methods in
solution-adaptive grid refinement, analysis, and implementation; assess the
current practice; and discuss future needs and directions for research. This was
accomplished through a series of invited and contributed papers. The workshop
focused on a set of two-dimensional test cases designed by the organizers to aid in
assessing the current state of development of adaptive-grid technology. These
test cases are listed and described in the following section. In addition, a panel of
experts from universities, industry, and government research laboratories
discussed their views of needs and future directions in this field.

The invited and contributed papers, as well as the transcript of the panel
discussion, are included herein. In this preface, several observations regarding
the general results of the workshop follow, condensed mainly from the panel
discussion. One general observation is that not many of the “benchmark” cases
were attempted by all the participants, so it is difficult to rate the efficiency
among the many current approaches.

The second general observation is that the state of the art is characterized by
approaches that refine meshes only in high-gradient regions, while ignoring
some very important regions of the flow which are smoother but nonetheless
crucial to obtaining the correct solution. The transonic airfoil case with the
“fishtail” shock, wherein the location of the normal shock in the wake is
extremely sensitive to the smooth supersonic flow over the airfoil ahead of the
oblique shock at the trailing edge, illustrates this difficulty.

The third general observation is that there is still a dearth of research regarding
the analysis of accuracy and convergence of adaptive methods, especially for
problems with embedded hyperbolic regions of flow. The vast majority of
current research and demonstrations must resort to comparing results with
those of a globally-refined numerical solution (the “old fashioned way”), which
still seems to be the only trustworthy method for assessing numerical
convergence in practical nonlinear boundary-value problems.

Finally, there was considerable discussion among the panelists and participants
on the need for a “black box” CFD code in the future, meaning that the design
engineer would be able to use a CFD code as a research tool without requiring
intimate knowledge of the workings of the code itself. Certainly, solution-
adaptive grids will be a key element in such a code of the future. One imagines a
code which performs a preliminary grid generation based on the geometry and
flow parameters input to the code, followed by adaptive refinement of the grid
without intervention of the designer. If such “black box” CFD codes become a



reality, they should provide an estimate for the engineer as to how much
numerical error remains in the result.

There was a feeling that a follow-on workshop would be highly profitable to the
research community. A number of the algorithms presented at this workshop
have the capability to treat three-dimensional flows. Thus, it is expected that
another workshop will be organized in the near future, including one or more
three-dimensional test cases.

Our thanks go to Ms. Emily Todd for managing the workshop and to Ms. Lori
Rowland and Ms. Lisa Kitchen for transcribing the panel discussion.

Jerry C. South, Jr., NASA Langley Research Center
James L. Thomas, NASA Langley Research Center

John Van Rosendale, ICASE
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Adaptive Grid Workshop Airfoil Cases

1.0 AGARD 01

1.1 Geometry

The airfoil geometry for this case is that of a NACA 0012 airfoil with a closed trailing edge.
Coordinates and cubic spline coefficients will be given. Because of the solution sensitivity of the
outer boundary location, either of the following outer boundary definitions is recommended.

I< - 200 -
p 3
square centered
100 at0.25¢. 100
semi-circle 1~ 1 |~y
centered at 0.25 c./<——— 100 ———> L(_____ PP p— i
100

Figure 1. Outer boundary definitions for NACA 0012 airfoil grid.

1.2 Flow conditions

The flow conditions for the AGARD 01 test case are M, = 0.8 and o= 1.25°. The fluid is assumed
to be a perfect gas.

1.3 Qutput

The AGARD 01 test case has an upper and lower surface shock. The locations of these two
shocks, along with the shape of the sonic line, will be compared between solutions.



2.0 AGARD 03

2.1 Geometry

The airfoil geometry for this case is that of a NACA 0012 airfoil with a closed trailing edge.
Coordinates and cubic spline coefficients will be given. Because of the solution sensitivity of the
outer boundary, the adaptive methods should account for this sensitivity. Grid convergence stud-
ies will be conducted for a series of outer boundary diameters to eliminate the outer boundary
effect. If the adaptive calculation does not eliminate the outer boundary effects, then one of the
outer boundary definitions from case 1 should be used. One way to eliminate the outer boundary
effect would be to employ an adaptively movable outer boundary.

2.2 Flow conditions

The flow conditions for the AGARD 03 test case are M_, = 0.95 and o = 0°. The fluid is assumed
to be a perfect gas.

2.3 Output

The AGARD 03 test case has a fish-tail shock structure that is shown below. The distance X from
the trailing edge of the airfoil to the normal shock in the wake will be measured. Additionally, the
shape of the sonic line will be compared between solutions.
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Figure 2. Shock structure for AGARD 03.




3.0 Suddhoo and Hall four-element airfoil

3.1 Geometry
The geometry for the four-element airfoil case of Suddhoo and Hall is obtained by the applying
the Karman-Trefftz mapping function. For this workshop, coordinates and spline coefficients for

each of the elements will be given. Additionally, a coarse, block-structured grid which consists of
14 blocks, and an unstructured triangular grid are available upon request.

U@x

N\

Figure 3. Suddhoo and Hall four-element airfoil configuration.

3.2 Flow conditions

The flow conditions for the Suddhoo and Hall four-element airfoil are M, =0.2 and o = 0°. The
fluid is assumed to be a perfect gas.

3.3 Output

The calculated coefficient of pressure for each of the elements will be required.



4.0 Douglas three-element airfoil (viscous)

4.1 Geometry

The geometry for this case is that of a Douglas three-element airfoil in a wind tunnel. Coordinates
and spline coefficients for each of the elements will be given at a later date.

Figure 4. Configuration of three-element airfoil in wind tunnel.

4.2 Flow Conditions

The flow conditions for this case are M = 0.2, ar= 16°, Re = 9 x 10°. The fluid is assumed to be a
perfect gas. Inflow and outflow boundary conditions are specified at the left and right of the

domain, and inviscid, solid-wall boundary conditions are specified at the top and bottom of the
domain.

4.3 Turbulence Model
The calculations for this case should be done with the assumption that the boundary layer is
always turbulent on the airfoil; the flow is assumed to be inviscid on the tunnel walls. The turbu-

lence model used should be the Spalart-Allmaras turbulence model as described in AIAA paper
92-0439, A One-Equation Turbulence Model for Aerodynamic Flows.”

4.4 Output

The calculated coefficient of pressure for each of the elements will be required.



5.0 Jameson airfoil with nonunique solution

5.1 Geometry

The airfoil geometry for this case is described in AIAA paper 91-1625, “Airfoils Admitting Non-
unique Solution of the Euler Equations” by A. Jameson. Coordinates and spline coefficients will
be supplied at a later date.

<P

Figure 5. Jameson airfoil geometry.

5.2 Flow Conditions

This case should be calculated with an inviscid solver. As noted in Jameson’s report, this airfoil
geometry exhibits nonunique solutions for a given angle of attack. Nonunique solutions occur
within a specified angle-of-attack range when the new solution is started from the previous solu-
tion while the angle of attack is first increased and then decreased. Two types of calculations are
encouraged.

1. Steady-state spatially adaptive solutions that exhibit the nonuniqueness described by Jame-
son. '

2. Unsteady, spatially adaptive solutions in the limit as the reduced frequency goes to 0.

The angle of attack range is from -1.2° to -0.8°.

5.3 Output

Plots of lift versus angle of attack will be required.



6.0 Shock reflection from a double wedge (time dependent)

6.1 Geometry

Given the relative dimensions shown in the schematic, the geometry is fixed by the wedge angles
o and B, which are set to 20° and 55°, respectively.
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Figure 6. Double wedge geometry.

6.2 Initial conditions

A shock is prescribed at the location shown in the schematic. The {luid is assumed to be a perfect
gas for which the ratio of specific heats is taken to be 1.4. The strength of the shock is determined
from the shock Mach number M, (the ratio of the shock speed to the sound speed of the quiescent
fluid), which should be taken as 2.16. To provide a common frame of reference, the density and
the pressure of the quiescent fluid (state 2) should both be set to 1. Given these initial conditions,
the simulation is performed by integrating the Euler equations forward in time.

6.3 Output

Details in regard to required output quantities will be given at a later date.
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hp-ADAPTIVITY AND ERROR ESTIMATION FOR HYPERBOLIC 758D

CONSERVATION LAWS ~ N96-18072 /?, \dﬂ

Kim S. Bey
NASA Langley Research Center
Hampton, VA

SUMMARY

S

'This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conser-
vation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which
reflect the dependence of the approximate solution on the element size (h) and the degree (p) of
the local polynomial approximation. The a posteriori error estimate, based on the element residual
method, provides bounds on the actual global error in the approximate solution. The adaptive
strategy is designed to deliver an approximate solution with the specified level of error in three
steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and
the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed
to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori
error estimates and the effectiveness of the hp-adaptive strategy.

INTRODUCTION

Adaptive methods, based on successive refinement of an existing mesh or a complete re-meshing
of the computational domain, have become invaluable tools in computational fluid dynamics. The
amount of refinement or the clustering of grid points is often determined by an element refinement
indicator, 6, of the form

8, = h%|D"u| (1)

where h is a measure of the element size, o is an exponent, and D™u represents some higher-order
derivative of a key variable. Since these indicators are based on interpolation or truncation error
estimates, they are applicable to a large class of problems and are independent of the numerical
method used to obtain an approximate solution. Although these indicators detect certain flow
features, they may not relate to the actual error in the solution. QOften, these indicators only
provide a relative measure of the error and do not provide a criteria for stopping the adaptive
process.

This paper summarizes some of the work presented in [4] aimed at developing hp-adaptive
strategies based on reliable error estimates for hyperbolic conservation laws. The work focuses on



the discontinuous Galerkin method applied to a model class of linear hyperbolic conservation laws
for which it is possible to develop mathematically rigorous a priori and a posteriori error estimates.

The notion of discontinuous Galerkin methods for hyperbolic problems originated in the classical
work of Lesaint and Raviart [1] over two decades ago. Johnson and Pitkaranta [2] generalized the
theory of discontinuous Galerkin methods by introducing mesh-dependent norms and were able to
derive a priori error estimates in such norms for linear hyperbolic problems. Discontinuous Galerkin
methods were extended to nonlinear hyperbolic conservation laws by Cockburn, Hou, and Shu [3]
who developed a local projection strategy to provide nonlinear stability.

The local nature of the discontinuous Galerkin method makes it ideally suited for adaptive
strategies which combine local mesh refinement (h) with local enrichment of the polynomial ap-
proximation (p) in an element to improve solution accuracy. The theory of discontinuous Galerkin
methods was extended to hp-finite element approximations by Bey in [4] for a class of linear hy-
perbolic conservation laws. In [4], very high accuracies and convergence rates were observed in
applying discontinuous Galerkin methods to representative test problems.

The a posteriori error estimates developed in [4] are based on the element residual method and
provide bounds on the global error. Error estimates are combined with an hp-adaptive strategy
that predicts the mesh required to deliver a solution with the specified level of error.

The theoretical developments of [4] are summarized in this paper. The discontinuous Galerkin
method, the a priori error estimate which establishes the accuracy and coﬁvergence of the method,
and the a posteriori error estimate used to assess the accuracy of the numerical solution are pre-
sented. The reliability of the a posteriori error estimate is assessed by solvingvtwo examples prob-
lems with known discontinuous solutions. The effectiveness of the adaptive strategy at delivering a
solution with the specified level of érror is"also demonstrated using the numerical examples.

THE DISCONTINUOUS GALERKIN METHOD

Consider the following hyperbolic conservation law

B-Vutau = f inQcR? (2)

B-nu = B-ng onl_ 3)

where 8 = (6, ﬁg)T denotes a constant unit velocity vector, n denotes the unit normal vector
pointing outward to the domain boundary 90, I'_ = {x € 90 | B - n(x) < 0} denotes the inflow

boundary, ¢ = a(x) is a bounded measurable function on  such that 0 < a¢ < a(x), f € L3(),
and g € L*(T'_). While this is the simplest of hyperbolic conservation laws, solutions to (2) may

8



contain discontinuities along characteristic lines x(s) defined by %’f = 8. Solutions to (2) belong to
the space of functions V(Q) = {v € L*() | vs € L*(Q)} where vg = 8- V.

The starting point for the discontinuous Galerkin methods is to develop an appropriate weak
formulation of (2) defined on a partition of € into elements, denoted by P,. Here the elements
K € Py, are general quadrilaterals of diameter s, with outward unit normals ng. The element
boundaries K have an inflow boundary 0K_ = {z € 0K : B-ng < 0} and an outflow boundary
0K, = 0K \ 0K _. The space of admissible solutions is extended to the partition using the broken
space V(Pp) = Hgep,V(K). The standard conventions in finite element meshing are assumed to
be in force: Py is a family of partitions F;, and each element K of Py is the image of an invertible
map F, of a master element K= [-1,1]2. The partitions P;, € F} are regular and, in the present
study, it is sufficient to take F, as affine maps. For each partition P4, approximate solutions are
sought in the subspace Vy(Py) = {v € L* () | v, o F.' € @ (K)} where Q"% (K) denotes the
space of functions formed by tensor products of Legendre polynomials of degree p, on the master
element K. Note that the polynomial degree, p,, may vary over different elements in the mesh
and that functions v} € V,(Ps) are discontinuous across element interfaces. The approximation
properties of such spaces are typified by local interpolation estimates of the following type (see [5]):
if u € H*(K), there exists a constant C, independent of h,. = diam(K) and p, (the minimal order
of the polynomial shape functions for K), and a polynomial w of degree p,, such that

min(pg +1,s)
K
llu — wllrg < C——|lullsx ; r=0,1 (4)

ST
Dy

where || - ||,k denotes the usual Sobolev norm.

The following notation is used for functions v € V(Py):

CvE = limegu(x + €f) )
VK = gy (2), z€dK
XK = | (2), ze€dKNOL \ (5)
(vw)y = Jerwdx ;5 ||l =4/(v,v),
(vywhok = foxvw|B-nklds ; ((v))og = y/{v,v)ox |

The discontinuous Galerkin method applied to (2) is written in the following abstract form:

Find @ € V,(Ps) such that

3 B (,8) = > L.(d), for every & € V,(Ps) (6)
KePy, KeP,,



where (see [4])

B (4,5) % (is+a,o+ 5” vﬂ)K+(1+ah’f)(u L
K
+ (1+5 )(u o+ )ox_nr_ (7)
L(5) & <f,v+6@—vﬂ)K+<1+6 £)(a, oror- ®)

and 6 is a parameter with a value of 0 or 1. The method with § = 1 in (7) and (8) is the so-
called streamline-upwind discontinuous Galerkin method. The additional term —évﬂ in the element
integrals adds diffusion in the streamline direction without compromising the accuracy of the ap-
proximation. The method with § = 0 is the standard discontinuous Galerkin method which can be
viewed as a higher-order extension of a cell-centered finite volume method where the coefficients of
the higher-order terms in the polynomial approximation of the solution in an element are obtained
from the conservation law and not by reconstruction. Integrating the first-order terms by parts in
(6) with 6 = 0 and manipulating the result yields the familiar numerical flux formulation of the
finite volume method

B, (2,) = (8, ab — %), + /a . G(alnt K gext Kyg, 9)
where 1, 1 ]
q(umt K ﬁext K) - 5 (ﬁmt K 4 aext K) _ ‘Q‘Iﬂ - ng| (ﬁext K _ amt K) (10)

The error in the discontinuous Galerkin solution satisfies the following a priori estimate [4]:

Theorem 1 Letu € H*(2) be a solution to (2), let i be a solution to (6), and let (4) hold. Then
there exists a positive constant C, independent of h,., p,., and u, such that the approzimation error,
e = u — 1, satisfies the following estimate

memhp,ﬂsc{z {" max(,—;)nun H (11)
KePy, | Px Py

where p,, = min(p, +1,s) — %, v, =s—1, and

(M1

lelllnns = { > [;%jneﬂni Il + (e — W e + <<e>>§m] } (12)

KePy,

The a priori estimate (11) establishes convergence of the method and is useful for predicting
how the error in numerical solutions behaves with h-refinement or p-enrichment. Unfortunately,

10



its usefulness in assessing the accuracy of a given numerical solution is limited since the estimate
involves unknown constants and the exact solution.

A POSTERIORI ERROR ESTIMATION

A posteriori error estimates used here are based on extensions of an element residual method of
Ainsworth and Oden [6]. Element error indicators are computed by solving a suitably-constructed
local problem with the element residual as data. These local indicators are used in the adaptive
strategy to assess the accuracy of the solution in an element. Moreover, they contribute to a
global error estimate which is accurate enough to provide a reliable assessment of the quality of the
approximate solution. Detailed derivation of the a posteriori estimate can be found in [4].

The local problem is constructed to result in an upper bound on the error. Let ¢, be the
solution to the following local problem,

AZ(’(pK’IvK) = Bx(ex’vx) = LK(UK) - BK(’&K’,UK) Vve V(Ph) (13)
where 5
Al v) = 5B Ve, B Vo) + 8t v )i (14)

and @ > 0 is a constant. Note that the local problem differs from the conservation law, in particular,
it is symmetric and induces a norm on the space V(K. The solution to the local problem, measured
in the norm,

[l |l = Ag (Y, i) (15)

AV
serves as an element error indicator in the adaptive strategy. The global error estimate is a sum of
element contributions given by

Wl = [ 3 e, (16)

KePy, AT (K)

The solution to the local problem (13) provides an upper bound on the global error in the following
sense [4]:

Lemma 1 Let ¢ € V(Py) be the solution to the following problem:

S A (Ye,v) = Y Ble,v) Vo€ V(P) (17)

KePy, KePy,

Then there exists a positive constant k such that

1l o 2 Elllelllnps (18)

11



An approximate solution to the local problem (13) in the corresponding norm serves as a local
error indicator for the element. Since the discontinuous Galerkin solution satisfies the orthogonality
condition,

Bi(e,v) =0 Yve Q¥ (K) (19)

the error indicator must be approximated with a polynomial of degree p, + o, where o, > 1 in
order for the discrete local problem to have a non-trivial solution. If a complete polynomial of
degree p, + 0, (on the master element) is used to approximate the solution to the local problem,
then the discrete local problem requires the solution of a system of order (p, +0, +1)2. This system
can be fairly large compared to the system of (p, + 1)? equations used to obtain the approximate
solution for which we are estimating the error. Since (p, + 1) terms on the right hand side of the
discrete local problem (corresponding to (19)) are zero, a simplification is made by approximating
the solution to the local problem in the space Q?x 7k (K) \ QPx (K. In other words, the solution
to the local problem is approximated with incomplete polynomials of degree p, + o, by neglecting
the terms associated with polynomials of degree p,. This simplification results in a system of
0. (0, +2p, +2) equations for each element.

THE hp-ADAPTIVE STRATEGY

The hp-adaptive strategy used here is an extension of the 3-step strategy developed by Oden,
Patra, and Feng [7] for a large class of elliptic problems and, in several applications, was shown to
yield exponential rates of convergence with respect to both CPU time and the number of unknowns.

The goal of the adaptive strategy is to deliver a solution with the specified level of error in three
adaptive steps: (1) estimate the error in the solution obtained on an initial mesh (2) construct a
new mesh using h-refinement of the initial mesh, solve the problem on the new mesh, and estimate
the error, and (3) enrich the approximation in regions where the solution is smooth by increasing
the spectral order of the elements in the mesh from step (2), and if necessary, perform h-refinement
in regions where the solution is of low regularity. If the level of error after step (3) exceeds the
specified level, it is necessary to repeat steps (2) and (3) until the desired error is attained.

The hp-adaptive strategy is based on the assumption that the a posteriori estimate is a rea-
sonable approximation to the actual error in a particular solution. The a priori estimate (11) and
some additional assumptions (see [4]) lead to expressions for estimating the local regularity of the
solution and for predicting the mesh required to reduce the error to the specified level. The entire
procedure is outlined below. Detailed development of the hp-adaptive strategy can be found in [4].

(i) Specify a target normalized error, n,. The target error is normalized by the solution
in the same norm. Specify the parameter a to determine the intermediate target error,

12



(i)

(iii)

n; = an,. Specify the parameters a; and «, which establish reduction factors for the
error in smooth and non-smooth regions as described below. Specify the parameters
pyx and v, in the a priori estimate (11). Formally these parameters depend on the
global regularity of the solution. While there is little theoretical justification, local
values can be used by computing the rate of convergence of the local error for a uniform
h-refinement and p-enrichment of a coarse mesh.

Construct an initial mesh Py containing N(P,) elements. The elements in Py have
uniform p, = pp and essentially uniform h, =~ hg. Find the approximate solution
g € Vp, (Po). Estimate the error 6y where

b = \[ > = [> Il (20)
KePy KePo

and 1, is the solution to the local problem (13).

Construct a mesh P; by subdividing each element in Py into the number of elements,
n, Tequired to equally distribute the error and reduce it to 67 = n,(||dol| , + 60). The
number of elements, n,, is obtained by iteratively solving the following two equations:

ng = (02’?1\7(731)) (21)
N(P) = Kz; T (22)

Find the approximate solution %; € V,, (P1) and estimate the error 6;.

Estimate the local regularity of the solution by computing the rate of convergence of
the local error

logbyx — lo 15, 07
_ g VoK g\/—E_L—:—h;, K:l,,N(PO) (23)

l“K h
logh, — log —K—W_

The value of g, given by (23) is associated with an element K in the initial mesh and
is simply inherited by the new elements generated by subdividing the element K. The
expected rate of convergence for smooth solutions is p, + %, according to the a priori
estimate (11). Divide the error into two contributions according to the value of p, :

1
6, = ZG%,IU QDz{KePlzuK<pK+§} (24)
| Ken
03 = | Z 0‘%,[{ ) Qs =P \ QD (25)
\/ Ken
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Subdivide the elements in 2 into the number of elements required to equally distribute
the error and reduce it to a,¢,,. Enrich the approximation in £, to equally distribute
the error and reduce it to o 0, by increasing p, according to

Px = Po (911{———* 'N(QS)) : (26)

s 05

Find the approximate solution on the new mesh and estimate the error.

(v) If the estimated error in (iv) is larger than the target error, repeat step (iii) and (iv)
until the target error is reached.

In the current implementation, h-refinement is accomplished by successive bisection of an ele-
ment and is limited to two levels for a particular adaptive step. The h-refinement in (iv) is necessary
only when the error #,, exceeds the target error.

NUMERICAL EXAMPLES

The discontinuous Galerkin method with § = 1 in (6) is used to solve the model problem (2)
to assess the reliability of the error estimate and to investigate the performance of the hp-adaptive
strategy for problems with discontinuous solutions.

Example 1

We solve the linear model problem (2) with the following data:

(i) Q=(-1,1) x (-1,1)
(i) B = (1.0,0.0)"
(iii) a(x) = 1.0

(iv) g =< 38-5(1+y2)2 ity <0
~3e-3(1+¥")  otherwise

The source term f in (2) is chosen so that the exact solution is the discontinuous function given by

3e7 @) ify <0

u(z,y) = { ~3e~5"+")  otherwise 0
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and shown in Fig. 1. The discontinuity is aligned with element interfaces at y = 0 to illustrate the
advantage of using a discontinuous method to capture discontinuities, particularly if the adaptive
scheme includes some shock fitting which aligns the grid with the discontinuity.

The problem was solved using a variety of uniform meshes with h-refinements, p-enrichments,
and the hp-adaptive strategy. The error history for an hp-adaptive solution starting from an initial
8 x 8 mesh of p = 1 elements is listed in Table 1. The target error was nearly achieved at each step
in the adaptive process. Recall that the target error is a global quantity obtained as the square
root of the sum of the squares of the element error indicators (16). Therefore the error in a single
element cannot exceed the target error. The global effectivity index, the ratio of the estimated error
to the actual error, is also listed in Table 1. An effectivity index close to unity indicates that the
error estimate is reliable and provides a good approximation to the actual error. The effectivity
indices in Table 1 are slightly less than unity, indicating that the actual error is larger than the
estimated error. However, the estimated error is sufficiently close to the actual error to result in an
effective adaptive strategy.

Adaptive step Target error | Achieved error | Effectivity index
initial (8 x 8 mesh, p =1) —_— 15.4% 0.998

h-refinement 7.5% 3.3% 0.996

p-enrichment 5.0% 5.5% 0.901

Table 1: Example 1 - Error history for an hp-adaptive solution

The rate of convergence of the estimated and exact error is compared in Fig. 2. The exact error
(denoted by a solid line in the figure) and the estimated error (denoted by a dashed line) are in
close agreement, indicating the reliability of the estimate. Note that with the discontinuity aligned
with element interfaces, the error behaves as if the solution is smooth; that is, algebraic rates of
convergence are achieved with respect to mesh refinement, and exponential rates of convergence
are achieved with respect to p-enrichment. When the discontinuity is aligned with the element
interfaces, the most significant error reduction with fewest degrees of freedom results by specifying
a target error for the h-step which is closer to the initial error than to the final target error. This is
verified by the curves corresponding to two hp-adaptive solutions in Fig. 2. The error corresponding
to the hp-adaptive solutions in Fig. 2 exhibits super-linear rates of convergence.

The element residual method gives a global error estimate which bounds the actual global error,
however, nothing in the theory indicates the reliability of the local element indicators. Since the
local error indicators are used in the adaptive strategy, it is important that the indicators give an
accurate approximation of the actual element error. The hp-adapted mesh resulting from an initial
8 x 8 mesh of p = 1 elements and the local effectivity index for the element error indicators, 7,., are
shown in Fig. 3. Although there are some elements with low effectivity indices (indicating that that
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actual error is much larger than the estimate), the local effectivity index for most of the elements
falls between 0.8 and 1.2 indicating that the local error indicators are sufficiently accurate for use
in the adaptive strategy.

Example 2
The following data is used in (2):

(i) 2=(-1,1) x (-1,1)

.. T

(i) 8= (2%
(iii) a(x) =1.0

) 5e—[i+9] 4 3 l1+(v-2°1 2 = 1
(IV) g(]"? y) = —1- 86..5{(1‘__%)2_*_:11_] y = -1

The source term f in (2) is chosen so that the exact solution is a function which is discontinuous
along the domain diagonal given by

e~ e+1 %) 4 36"+ ify > g

u(z,y) = { —1 — 8e~Slm—1+(y+3) otherwise (28)

and shown in Fig. 4.

The global estimated error for a sequence of uniform refinements and for several adaptive hp-
meshes is shown in Fig. 5. The labels hp-adaptive in Fig. 5 refer to the adaptive strategy with
only p-enrichment in the third adaptive step. The labels hhp—adaptive refer to the strategy with
both h-refinement and p-enrichment in the third adaptive step. The hp-adaptive strategy delivers
nearly linear rates of convergence with respect to-the number of degrees of freedom. The rates of
convergence (the slope of the lines in Fig. 5) for the adaptive strategy are higher than the rates of
convergence for uniform refinement, indicating that a more accurate solution is obtained with far
fewer degrees of freedom when using the hp-strategy. The rate of convergence obtained with the
adaptive strategy determines the efficiency of the overall process, and as seen in Fig. 5, the rate of
convergence depends significantly on the target and intermediate error specified.

The error history for the hp-adaptive solution denoted by the solid triangles in Fig. 5 is listed in
Table 2. The target error was nearly achieved at each step in the adaptive process. The effectivity
index (the ratio of the estimated error to the exact error) is on the order of 0.6, quite good for a
discontinuous solution, but indicating that the actual error is larger than the estimated error. -
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Figure 1: Example 1 - Exact solutjon.
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Figure 2: Example 1 - Rates of convergence of the global error with respect to the total number of
unknowns. '
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Figure 3: Example 1 - Reliability of the local error indicators for an hAp-adapted mesh.

17



Adaptive step Target error | Achieved error | Effectivity index
initial (16 x 16 mesh, p = 1) o 7.22% 0.62
h-step 3.6% 4.1% 0.58
hp-step 2.2% 2.8% 0.57

Table 2: Example 2 - Error history for an hp-adaptive solution

Recall that the global error is a sum of element error indicators. The primary source of the
under-estimation of the global error is the under-estimation of the element error indicators near
the discontinuity as shown in Fig. 6. Although the local error estimate provides a qualitative
measure of the error at the discontinuity, the low local effectivity index indicates some severe
under-estimation of the error in that region. Note, however, that the local error estimate in smooth
regions is very accurate with effectivity indices near unity.

CONCLUDING REMARKS

The development of an hp-adaptive discontinuous Galerkin method for hyperbolic conservation
laws is presented in this work. The emphasis of the work is on a model class of linear hyperbolic
conservation laws for which it is possible to develop a priori error estimates and reliable a posterior:
estimates which provide bounds on the actual error. These estimates are obtained using a mesh-
dependent norm which reflects the dependence of the error on the local element size and the local
order of the approximation.

The hp-adaptive strategy is designed to deliver solutions to a specified error level in an efficient
way. This is accomplished using a three-step procedure in which the a posteriori estimate is used to
determine the error in the solution at-a particular adaptive step and the a priori estimate is used
to predict the mesh required to deliver a solution with the specified level of error. The hp-adaptive
strategy makes further use of the a priori estimate to provide detection of discontinuities in the
solution thereby identifying regions where h-refinement and p-enrichment are appropriate.

Numerical experiments demonstrate the effectiveness of the a posterior:i estimates in providing
reliable estimates of the actual error in the numerical solution. Although local error estimates
near discontinuities under-estimate the actual error, the local error estimates are very accurate in
smooth regions. The numerical examples also illustrate the ability of the hp-adaptive strategy to
deliver a final solution with the specified error. While the hp-adaptive strategy provides supet-linear
convergence rates with respect to the number of unknowns in the problem, the rate of convergence
depends on the level of error requested at each step in the adaptive process. More numerical
experiments are needed to provide guidelines for selecting the optimum user-specified parameters.
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Figure 4: Example 2 - Exact solution.
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Figure 5: Example 2 - Rates of convergence of the estimated global error with the number of
unknowns.
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Figure 6: Example 2 - Reliability of the local error indicators for an hp-adapted mesh.
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ABSTRACT

This paper discusses the issues which arise when combining multigrid strategies with
adaptive meshing techniques for solving steady-state problems on unstructured meshes. A
basic strategy is described, and demonstrated by solving several inviscid and viscous flow
cases. Potential inefficiencies in this basic strategy are exposed, and various alternate ap-
proaches are discussed, some of which are demonstrated with an example. Although each
particular approach exhibits certain advantages, all methods have particular drawbacks, and

the formulation of a completely optimal strategy is considered to be an open problem.
INTRODUCTION

Although most work on adaptive meshing methods has concentrated on the logistics
of refining the mesh and the formulation of suitable refinement criteria, efficient solution
techniques for the resulting discrete equations are also required in order to enable both fast
and accurate solutions. The use of multigrid methods as fast solvers for computational fluid
dynamics problems on both structured and unstructured meshes is now well established.
Adaptive meshing in particular provides a natural setting for the use of multigrid solvers.
The various refined meshes generated from the adaptive process can be used to form the
set of coarse and fine meshes of the multigrid sequence. The multigrid algorithm can then
be used to accelerate the convergence to steady-state of the discrete equations on the finest
adaptive mesh. In fact, the synergy between the two techniques is greater than may be
initially apparent, and has roots in the ideas of multi-resolution (see Figure 1). The role of the
adaptation process is to identify regions of the domain where the resolution of smaller scales is
required and to generate these required new mesh levels, while the role of the multigrid solver
is to eliminate the various high and low frequency errors of the solution on the grid level which
best represents them. This has led to the development of methods such as the FAC (Full
Adaptive Composite) method, [1], and to the notion of the dealgebraization of multigrid, as
described by Brandt [2], where the multigrid procedure is no longer viewed as simply a fast
solver for discrete equation sets, but rather as part of a complete strategy for approximating

the solution to the continuous partial differential equation. Spatial convergence is achieved by
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the adaptation process, while temporal or numerical convergence is achieved by the multigrid
procedure. Additionally, the multigrid defect-correction (i.e. coarse grid source term in the

multigrid formulation) can be used to devise a refinement criterion.

Although these ideas are appealing, their application to systems of non-linear equations
such as those found in computational fluid dynamics is still a relatively unexplored research
area. In the present work, various adaptive-meshing multigrid strategies are proposed, and
evaluated both in practical terms (i.e. speed of convergence, complexity of V or W cycle),

and in terms of how well they obey the principles of multi-resolution.
DESCRIPTION OF BASE STRATEGY

The first adaptive-meshing multigrid strategy employed is denoted as the “basic strat-
egy”. This method has been found to perform well in practice, and has been used to solve

" a number of inviscid and viscous steady-state cases. The approach relies exclusively on the
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use of unstructured meshes which greatly simplifies the task of adaptation.
Single Grid Solver

The Euler (inviscid) or Navier-Stokes (viscous) equations are discretized using a Galerkin
finite element approach [3]. In the inviscid case, this reduces to a finite-volume scheme where
the flow variables are stored at the vertices of the mesh, and the control volumes are formed
by the union of all triangles which touch the considered vertex. This corresponds to a central
difference scheme, and additional dissipative terms must be added in order to preserve sta-
bility. These are constructed as a blend of an undivided Laplacian and biharmonic operator,
with the Laplacian terms used to suppress oscillations near shocks, and the biharmonic terms
used to prevent odd-even decoupling in regions of smooth flow. These discrete equations are
integrated in time using a five-stage time-stepping scheme devised specifically to damp high
frequency error modes (as is required in a multigrid scheme). Integration to steady-state is

accelerated by the use of local time-stepping and residual averaging [3,4,5].
Adaptive Meshing Procedure

Adaptively refined meshes are generated by inserting new points into the existing mesh
in regions of large gradients, and connecting them to existing mesh points by Delaunay tri-
angulation. The refinement criterion is based on simple undivided differences of one or more
flow variables. The difference of the flow variables across-each mesh edge is compared to the
average difference across all edges of the mesh. When the difference along a given edge is

larger than some fraction of the average difference, a new mesh point is added midway along



the edge. If one or more edges of a given triangle are flagged for refinement in this manner,
then all three edges are refined. This ensures an isotropic refinement strategy, which is nec-
essary to guarantee high quality meshes when using Delaunay triangulation. Once all the
new mesh points have been determined, they are inserted into the existing mesh sequentially
using Bowyer’s algorithm for Delaunay triangulation [6]. Given an initial Delaunay triangu-
lation, this method enables the insertion of a point anywhere in the mesh, and determines
the reconnection of this point to the existing points, which is the Delaunay triangulation of
this newly augmented point set. As illustrated in Figure 2, Bowyer’s algorithm first identifies
all triangles whose circumcircle is intersected by the new point. These triangles are then
removed creating a polygonal cavity, and the new triangulation is formed by joining the new
point to all vertices of the polygonal cavity. New boundary points are repositioned onto
the spline curves which define the geometry of the boundaries. After all points have been
inserted, the mesh is smoothed and edges are swapped in order to preserve the Delaunay
property [4,5,7]. Several passes of smoothing and swapping are usually performed. The use
of Bowyer’s algorithm in this manner is ideally suited for adaptive meshing problems, since
new meshes are constructed through local modifications of an existing mesh, which is much
more efficient than global mesh regeneration. Furthermore, the Delaunay construction of
the adaptive meshes prevents the appearance of degenerate connectivities which can arise
with simple refinement schemes such as triangle subdivision. Although a reverse Bowyer’s
algorithm is simple to formulate in two-dimensions, provisions for point removal have not
been implemented, since the applications here concern exclusively steady-state problems.

For transient problems, point removal capabilities are essential.
Multigrid Approach

There are various possible strategies for implementing a multigrid method with adaptive
meshing techniques for unstructured meshes. One approach consists of using the adaptively
refined meshes as the multigrid levels themselves [4,5]. If, for example, adaptively refined
meshes are created by simply subdividing the appropriate mesh triangles into four finer
nested triangles, multiple adaptive refinement passes result in a sequence of fully nested
adaptive meshes to which multigrid can be applied in a straight-forward manner using simple
restriction and prolongation (inter-grid) operators. This approach has been pursued by
several authors in the literature [8,9]. One of the drawbacks of this approach is to restrict
the type of adaptive refinement strategies which may be employed, and to tightly couple the

multigrid process with the adaptive mesh generation procedure. Furthermore, if the initial
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unadapted grid is relatively fine (which is most often required to resolve initial flow features),
multigrid efficiency will be limited by the ability to efficiently solve the discrete equations of
this mesh.

The multigrid approach adopted in this work relies on a sequence of coarse and fine meshes
which are essentially independent from one another [3,4,5,11]. The various meshes of the
sequence are not required to be nested, or even to have common points. They simply must
discretize the same physical domain. Linear interpolation is used to transfer flow variables,
residuals and connections between the various meshes of the sequence. The intergrid transfer
operators must be formed in a preprocessing operation, where for each vertex of a given
grid, the enclosing triangle on the next coarser (or finer) grid must be determined. Once this
information has been determined, grid transfer addresses and weights can be determined

and stored for later use in the multigrid solution cycles. This multigrid strategy enables

" the adaptively refined meshes to be constructed by any means available, even global mesh
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regeneration. The Delaunay construction employed here, and described in the previous
section, generally results in non-nested meshes, and meshes with no coincident points (due
to the mesh smoothing operation which displaces the mesh points). Furthermore, additional
coarser grids may be utilized to accelerate the solution of the initial grid itself. These are
generated using the same global mesh generation procedure as the initial mesh, but with
lower resolution throughout the domain. The basic procedure consists of generating the
initial mesh, and several coarser meshes. The flow solution on the initial mesh is then
obtained using this sequence of meshes in the multigrid procedure. A new adaptively refined
mesh is then constructed, based on the solution on the initial mesh, and this mesh is then
added as a new finer mesh to the current stack of multigrid levels. The restriction and
prolongation operators between the new and the initial mesh are then computed and stored.
The flow solution is interpolated from the initial mesh to the new finer mesh using these
operators, and multigrid cycling resumes, using the newly augmented sequence of meshes.
This procedure can be repeated, each time adding a new finer mesh to the sequence, until

the desired level of accuracy is obtained, as depicted in Figure 3.

A third multigrid approach for unstructured meshes consists of constructing the sequence
of coarse level meshes automatically, given a fine grid. This approach is embodied in algebraic
multigrid methods [12], agglomeration strategies [13,14,15], as well as automated coarséning
methods used in conjunction with the independent-mesh multigrid approach described above.
Thus, in the context of adaptive meshing, each time a new finer mesh is generated, the history
of adaptive refinement which resulted in this mesh is ignored, and an automated algorithm is
used to generate a complete set of coarse mesh levels based on the new mesh. The philosophy

in this approach is to employ multigrid simply as a fast solver for discrete equation sets, in



the same manner as an implicit method or direct solver may be used to solve the fine grid
equations. Since the history of refinement is not utilized as part of the solution strategy,
the multi-resolution concepts discussed previously are not exploited. Such methods have,
however, proved to be advantageous, and will be discussed in more detail in the section on

Adaptive Multigrid Issues.
RESULTS

The finite-volume method described above, combined with the non-nested multigrid strat-
egy and the Delaunay point-insertion adaptive mesh-refinement téchnique has been used to
solve various inviscid and viscous flow cases. These techniques have been implemented in a
single FORTRAN code, which takes as input a sequence of coarse initial meshes, the desired
number of adaptive levels, the number of cycles on each level and the refinement criteria for
each level, and outputs the sequence of adaptive meshes generated and the solution obtained

on the finest mesh.
Inviscid Flow Case 1

The first case consists of the inviscid transonic flow over a NACA 0012 airfoil at Mach
number 0.8 and 1.25 degrees incidence. For this case, the outer boundary was approximately
circular and placed at a distance of 100 chords from the airfoil. The initial mesh contained
2,112 points, and 5 coarser mesh levels were generated to accelerate the solution on this
mesh. The coarsest mesh of this sequence contains only 40 points. Three levels of adaptivity
were employed for this calculation. The final mesh is shown in Figure 4, and the solution
in terms of Mach contours is depicted in Figure 5. This mesh contains a total of 14,219
points. Mesh refinement is evident in the region of expansion near the leading-edge, and in
the vicinity of both the upper and the weak lower shock. The slip line at the trailing edge
of the airfoil is however poorly resolved. The undivided gradient of density was used as the
refinement criterion. Figures 6 and 7 depict the computed surface pressures and entropy for
this case. The shocks are well resolved, and the lift coefficient of 0.3587 is in agreement with

previously ’reported values [16]. Entropy, computed as

P
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s =

should be zero for inviscid flow ahead of the shock waves. As can be seen from Figure
7, the computed values near the leading edge are well below 1%, a good indication of the
local accuracy of this solution. The convergence rate of the entire adaptive process is shown

in Figure 8. At each state of adaptivity, 25 W-multigrid cycles were used to converge
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the solutions, and 100 W-cycles were used on the final level, in order to demonstrate the
asymptotic convergence rate of this method. The residuals were reduced by 6 orders of
magnitude in 100 cycles, which corresponds to an average reduction rate of 0.89. This case

was performed in about 45 minutes of CPU time on an SGI Indigo R4000 workstation.
Inviscid Flow Case 2

The second case consists of transonic flow over a NACA 0012 airfoil at a freestream Mach
number of 0.95 and 0 degrees incidence. For this case, two oblique shock waves and a normal
shock wave are set up downstream of the airfoil. The position of the normal shock is very
sensitive to the accuracy of the solution. A similar strategy to that discussed for the previous
case is employed; i.e., five initial meshes, three levels of adaptivity, undivided difference of

density as a refinement criterion. The final mesh and solution are depicted in Figures 9 and

.10 respectively. This mesh contains approximately 16,000 points. The normal shock shown

in Figure 10 is located 3.06 chord lengths downstream of the trailing edges, which is slightly
ahead of that reported elsewhere [17]. In this case, the outer boundary was located 130
chords away from the airfoil leading edge. A previous run on a similar mesh with the outer
boundary located at 42 chords yielded a normal shock position of 2.6 chords. This highlights
the sensitivity of the solution to the position of the outer boundary. The use of a simple
undivided difference as refinement criterion may also be partly responsible for the inexact

shock location in this case.

This case should be perfectly symmetric about the y = 0 axis, since the NACA 0012
proﬁlé is symmetric, and the flow incidence is zero. An appealing feature of the present
adaptation. strategy is that, in such cases, given an initial symmetric grid, the adaptively
refined grids remain perfectly syminetric, as can be seen from Figure 9. In the final solution,

the lift coefficient remained zero, to 6 significant figures.
Inviscid Flow Case 3

The third test case involves the inviscid subsonic flow over the Sudhoo-Hall four element
airfoil. The freestream Mach number is 0.2, and the incidence is 0 degrees. Three levels
of adaptivity were used for this case, beginning with an initial mesh of 6,466 points. Four
coarser meshes were employed to accelerate the convergence on the initial mesh. Thus, a total
of 8 mesh levels were used in the final phase of the calculations. The final mesh contained a
total of 22,792 points, and is depicted in Figure 11. Figures 12 and 13 depict the computed
surface pressures and surface entropy on the finest mesh. As can be seen, the entropy is
less than 0.1% over the entire conﬁguration, indicating a good level of local accuracy in the

solution. The lift and drag coefficients for this case were 4.9245 and -0.0038 respectively.



For inviscid isentropic flows, the overall drag should vanish. Thus the drag value of -38
counts is a good indication of the global accuracy of the solution. Figure 14 depicts the
convergence rate for this case, where 100 multigrid W-cycles were performed at each level of
adaptivity. The slopes of the various multigrid convergence histories are nearly identical on
the four different mesh levels, demonstrating the mesh independent convergence property of
the multigrid algorithm. Convergence on the final mesh is only slightly slower than that on
the initial levels, resulting in an average reduction rate of 0.925. The convergence history of
the computed lift coefficient is also plotted. On each mesh level, the lift coefficient comes
very close to its final value in less than 50 cycles. The effect of grid convergence can also be
seen by the diminishing differences between the final lift values on consecutively finer meshes.
Figure 14 thus illustrates the concept of using adaptive-multigrid as a method of solving for
the continuous set of partial differential equations, with the lift coefficient converging to the
infinite resolution value, and the multigrid procedure driving the numerical solution on each

level. This entire run, including all mesh adaptivity, was achieved in approximately 2 hours
on an SGI Indigo R4000 workstation.

Viscous Flow Case

This case consists of viscous turbulent flow over a three-element high-lift airfoil section.
The far-field boundary was placed at a distance of 50 chords away from the airfoil (wind-
tunnel walls were not modeled in this case). The finite-element discretization of the Navier-
Stokes equations described previously was employed, and the single equation turbulence
model of Spalant-Allamaras [18] was implemented to account for turbulence effects. The
same multigrid strategy described previously was employed to solve both the flow equations
and the turbulence equation in a loosely coupled approach. The mesh refinement procedure
required some modification for the highly-stretched meshes which are typically used for
viscous flows. The Delaunay in-circle criterion described above is used in a mapped space,
(resulting in a Delaunay in-ellipse criterion) for both the initial mesh construction, and
subsequent adaptive refinement operations [19]. When new boundary points are generated
by the refinement procedure, these must be displaced in order to coincide with the surface
splines which define the body shape. Whereas in the inviscid case this was easily achieved, in
the viscous case, this displacement can require the restructuring of many layers of grid cells
near the boundary. This is due to the possibility of the boundary point displacement being
much larger than the local normal grid spacing for highly stretched meshes. Thus, a system
of pointers is managed, in order to enable local mesh reconstruction near the boundary [19].

For this case, the freestream Mach number is 0.2, the incidence is 16 degreés, and the

Reynolds number is 9 million. Three levels of adaptivity were employed. The initial mesh
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contained approximately 25,000 points, while the final adaptive mesh which is depicted in
Figure 15, contains 120,307 points. This mesh exhibits very high resolution in the regions
of rapid expansions and in boundary layer and wake regions. A combination of (undivided)
pressure and Mach number gradients were employed to identify inviscid and viscous phe-
nomena for refinement. The solution in terms of computed surface pressure, is depicted in
Figure 16. This case involved a total of 7 multigrid levels (three adaptive levels, four initial
levels). The solution was obtained by running 100 multigrid W-cycles on each mesh, and
300 cycles on the final mesh. The residuals were reduced by 2.5 orders of magnitude on the
finest mesh in 300 cycles. This rate is substantially slower than for the inviscid cases, and
is primarily due to the stiffness associated with high grid stretching. For the viscous flow

cases, the mesh adaptivity operations are run as a separate job with a stand-alone code.

This case has been computed previously on non-adapted meshes of high resolution (up
to 240,000 points) and compared extensively with experimental data [20]. Although the
solution in Figure 16 appears well resolved, there are certain features, (such as the wake of
the slat element for example), which are lost prematurely when compared with the results
of [20], due to inadequate grid resolution. This illustrates the difficulty in applying adaptive
meshing to viscous flows, where features such as wakes are both spatially hyperbolic and

nonisotropic, and highlights the need for better refinement criteria.
ADAPTIVE MULTIGRID ISSUES

Although the previous examples demonstrate the effectiveness of multigrid as an efficient
solution strategy for adaptive meshing problems, certain characteristics of adaptive prob-
lems can degrade the overall efficiency of the above multigrid approach. These manifest
themselves, not as degradations of the observed convergence rates, but rather as unwanted
increases in complexity (number of operations) of the multigrid cycle. For example, in the
non-adaptive two dimensional case, the complexity of a V-cycle is bounded by 4/3 work
units, and that of a W-cycle by 2 work units, where a work unit is defined as the equivalent
work of one fine grid iteration (see Figure 17 for the definition of these cycles). Here, the
meshes are not generated adaptively, and the above bounds are computed assuming each
coarser mesh level contains 1/4 the number of points of the previous level. In the case of
adaptively generated meshes, where such relations between the complexities of the various
mesh levels no longer hold, the V-cycle complexity becomes equal to the sum of the com-
plexities of all meshes in the sequence, while the W-cycle complexity can become so high as

to make it impractical.



Even the V-cycle complexity is much higher than it need be. For adaptively refined
meshes, refinement only occurs in localized regions of the mesh, and there are large regions
of the domain where the mesh resolution is essentially unaltered between mesh levels. Re-
peatedly time-stepping in these regions of the mesh on various levels represents a waste of
computational effort. In this section, two strategies which overcome this increase in com-
plexity for V-cycles are described. A third approach which results in optimum complexity,
thus enabling the use of V or W cycles, is finally discussed.

The Zonal Fine Grid Scheme

The basic idea behind this scheme [21] is to omit time-stepping in regions of the mesh
which have not been refined with regards to the previous level. A crude implementation
consists of making use of the same multigrid strategy as described previously, but blanking
out the appropriate vertices on each mesh level. In actual fact, the fine mesh consists only
of the regions which have been refined, with possibly some extra buffer layers. The method
can be implemented by only storing these regions at each level in order to save memory
(although this has not been done in this work).

As an example, consider the adaptive mesh used to compute the inviscid flow over a
tandem airfoil configuration, shown in Figure 18. This mesh is the result of 6 levels of
adaptivity. For the zonal fine grid scheme, the 3rd and 4th adaptive levels are depicted
in Figure 19. Figure 20 compares the convergence rates of the zonal-fine grid scheme with
that of the global multigrid scheme described previously for this case. There are in fact 8
mesh levels in both multigrid cases, 2 initial global levels, and 6 adaptively generated levels.
(The global levels are identical for both schemes). The freestream Mach number is 0.7, and
the incidence is 3 degrees. The resulting transonic flow solution is qualitatively depicted in
Figure 21. Both multigrid schemes converge at nearly identical rates, in terms of residual
reduction per cycle. This result verifies the fact that multigrid time-stepping in regions
where no change in resolution occurs is unnecessary. The advantage of the zonal fine grid
scheme is the result of the reduction in complexity of the multigrid cycle, as shown in Figure
20. For this case, the zonal fine grid scheme is seen to be roughly twice as efficient as the
global multigrid approach.

This so-called zonal fine grid scheme developed in [21] is the unstructured mesh equivalent
of the fast-adaptive-composite scheme (FAC) [1], and as such embodies the multi-resolution
principles outlined in the introduction. Each mesh level is responsible for resolving a pa,rjbic-
ular range of scales, and highly disparate length scales are not found on any common mesh,

as is the case in a global mesh with localized regions of adaptive refinement.
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One of the drawbacks of this method is that the final solution lies on a composite mesh
which is spread over various multigrid levels. Aside from practical difficulties involved in
postprocessing the solution, this complicates other issues, such as the requirement of con-
structing a conservative discretization in the final solution, as well as the use of different

schemes on fine and coarse mesh levels.
Zonal Coarse Grid Schemes

The idea of the zonal coarse grid scheme is to overcome the difficulties encountered in
the zonal fine grid scheme due to the composite nature of the final solution, by maintaining
a global fine grid upon which the final solution is based. In order to maintain favorable
complexity, time-stepping is omitted on the coarser meshes in regions of the domain where

no mesh refinement takes place between two consecutive levels. This strategy is illustrated

“in Figure 22, using one-dimensional linear meshes, and compared to the zonal fine-grid and

global multigrid strategies. The overall complexity of the zonal fine grid and coarse grid
schemes are necessarily equivalent. As can be inferred from the figure, the zonal fine grid
and coarse grid schemes are equivalent, except that in the former case the non refined mesh
regions are represented on the coarse level meshes, whereas in the latter, these are assigned
to the finest possible mesh level. Hence, the zonal coarse grid scheme simply corresponds to

a reordering of the local unrefined and refined mesh levels.

The convergence rate of the zonal coarse grid scheme is compared with that of the zonal
find grid scheme and the global multigrid scheme for the transonic tandem-airfoil case on
the mesh of Figure 18. As expected, all three methods yield similar convergence rates on
a per cycle basis, while the zonal fine and coarse grid schemes achieve a factor two gain in
efficiency over the global multigrid scheme in this case due to the reduction in complexity,
as shown in Figure 20. Thus the zonal coarse grid scheme is equivalent to the zonal fine grid
scheme in terms of efficiency, but enables the final solution to be computed on a global fine
grid. The disadvantage of this approach is that each time a new adaptively refined mesh is

generated, the zonal coarse meshes must be reassigned to the appropriate levels.
Aggressive Coarsening Strategies

While the zonal fine and coarse grid schemes achieve substantial reduction in the com-
plexity of a multigrid cycle for adaptively generated meshes, the use of a W-cycle with such
schemes is still unpractical, due to the relative complexities of the various mesh levels. Since
the W-cycle performs frequent visits to the coarse level meshes within a single cycle, the
mesh complexity must be reduced by at least a factor of four when going to the next coarser

level in order to guarantee a bound on the overall W-cycle complexity, as the number of



mesh levels increases. Another characteristic of the zonal multigrid schemes described above
is that they rely on the adaptive refinement history in order to identify the coarse and fine
mesh levels. Such methods cannot be used effectively in the cases where this information is

not available, or in the case of a mesh of arbitrary construction.

Automated coarsening strategies can be employed to overcome these difficulties. Given a
fine mesh, these methods automatically generate coarser level meshes for use in the multigrid
algorithm. Algebraic multigrid [12], and agglomeration multigrid [13,14,15] are examples of
automated coarsening strategies. Automated coarsening algorithms have also been devised
for use with the fully nested multigrid approaches [10] and the non-nested approach [22].
These methods are attractive because they are fully automated and can be applied to any
given grid, regardless of its construction. These methods represent a philosophy in which
multigrid is decoupled form the adaptive process, and employed simply as a fast solver for
a discrete fine grid problem, much in the same manner as an implicit or direct solver would

be employed.

Aggressive coarsening relates to the attempt in an automated coarsening process to op-
timize the complexity of the generated coarse mesh levels. For a multigrid smoother which
is designed to damp high-frequency errors (as is usually the case), the optimal reduction
in coarse grid complexity between two successive levels is 4:1 in two dimensions, and 8:1
in three dimensions. Aggressive coarsening strategies can be devised which result in such
reductions of mesh complexity, thus resulting in an overall multigrid cycle of near optimal
complexity, and enabling the use of V or W-cycles. Although the complexity of the multigrid
cycle may be optimal, the overall solution efficiency can only be competitive provided the
multigrid convergence rate does not degrade substantially. Figure 23 provides a comparison
between the coarse mesh level obtained by two passes of aggressive coarsening on the fine
mesh of Figure 18, and the equivalent mesh from the global multigrid sequence (6th level
out of 8). Because each cell of the original grid is forced to “grow” at the same rate, the
large outer boundary cells are seen to grow much more rapidly throughout the coarsening
process than the small refined cells in the shock region of the fine mesh. This results in
large discontinuities in cell size which become even more pronounced on the coarser levels.
This in turn may degrade the observed convergence rate of a multigrid scheme based on
these mesh levels. A similar behavior is observed for agglomeration multigrid methods [15].
Aggressive coarsening strategies are evidently in complete violation of the multi-resolution
-principle associated with adaptive multigrid methods, where each mesh level is responsible
for a given range of scales. Not only does each mesh level contain a wide range of scales in

the present approach, but the bandwidth of this range increases on the coarser mesh levels.
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Nevertheless, for many problems, aggressive coarsening strategies are highly desirable,
both due to their fully automatic nature, and their low complexity. Such methods could
obviously be improved by trading off complexity for more regularity in the coarse mesh
levels, and thus better multigrid efficiency. However, this task generally requires global
information about the current fine mesh construction (i.e. in the adaptive mesh case the
history of refinement). This has important implications for the future design of automated
coarsening techniques, since at present, most of these methods (including algebraic multigrid

methods) rely exclusively on local information for constructing coarser levels.
CONCLUSION

Multigrid methods and adaptive meshing techniques have been shown to be complimen-

tary strategies which, when combined in the appropriate manner, can lead to a powerful

‘method which enables rapid convergence, both numerically and spatially, to the continu-

ous partial differential equation. Such methods naturally embody the principle of multi-
resolution where each mesh level is responsible for the spatial and numerical resolution of
given length scales. In practice, strict adherence to these principles is not always possible
or desirable. Successful methods must achieve a balance between complexity, convergence

efficiency, practicality, and ease of implementation.

A non-nested multigrid a,ppi*oach which utilizes each new adaptively refined mesh as
an additional multigrid level has been shown to work well in practice for a range of fluid
dynamics problems. The simple refinement criterion based on gradients in the flow solution
is not sufficiently reliable for application to all types of flows, particularly in the viscous case.
Improved refinement criteria and/or better error estimates are sorely needed before adaptive

meshing can be routinely used with -confidence for complex viscous flows.
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Fine adapted level

Coarse global level

Figure 1: Ilustration of the Ideal Multi-resolution Principle of
Adaptive Meshing Combined with Multigrid where Each Mesh Level
of the Multigrid Sequence Represents a Unique Resolution Scale.
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Figure 2: Illustration of Bowyer’s Algorithm for Delaunay Trian-
gulation New Point is Inserted into Existing Mesh By Removing all
Triangles whose Circumcircles Contain the New Point, and Rejoining
the New Point to All Vertices of the Resulting Cavity.
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Figure 3: Full Multigrid Strategy Used in Conjunction with Adap-
tive Meshing Each New Adaptive Mesh is Added onto the Stack, the

Solution is Interpolated onto the New Mesh, and Multigrid Cycling
Resumed.
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Figure 4: Final Adapted Mesh for Flow Over NACA 0012 Airfoil
(Number of Points: 14,219)



Figure 5: Computed Mach Contours on Adapted Mesh over NACA
0012 Airfoil (Mach = 0.8, Incidence = 1.25 degrees)
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Figure 6: Computed Surface Pressure Distribution for Flow over
NACA 0012 Airfoil (Mach = 0.8, Incidence = 1.25 degrees)
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Figure T7: Computed Surface Entropy Distribution for Flow over
NACA 0012 Airfoil (Mach = 0.8, Incidence = 1.25 degrees)
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Figure 9: Pinal Adapted Mesh for Flow over NACA 0012 Airfoil
(Mach = 0.95, Incidence = 0 degrees, Number of Points = 16,000)
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Figure 10: Computed Mach Contours on Adapted Mesh for Flow
over NACA 0012 Airfoil (Mach = 0.95, Incidence =0 degrees, Num-
ber of Points = 16,000)
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Figure 11: Final Adapted Mesh Employed for Computation of In-
viscid Flow over Four Element Airfoil (Mach = 0.2, Incidence = 0
degrees, Number of Points = 22,792)
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Number of Points = 22,792)
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Figure 15: Final Adapted Mesh for Computation of Viscous Turbu-
lent Flow Over Three Element Airfoil (Mach = 0.2, Incidence = 16
degrees, Reynolds Number = 9 million, Number of Points = 120,307)
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Fifth and Sixth Level Meshes Employed in the Zonal-

Fine Grid Scheme for Computation of Flow over Tandem

Configurat
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Figure 21: Computed Mach Contours on Adapted Grid for Flow
over Tandem Airfoil Configuration
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THE ADAPTIVE, CUT-CELL CARTESIAN APPROACH
(WARTS AND ALL)

Kenneth G. Powell
The W. M. Keck Foundation CFD Laboratory
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INTRODUCTION

Solution-adaptive methods based on cutting bodies out of Cartesian grids are gaining popularity
" now that the ways of circumventing the accuracy problems associated with small cut cells have been
developed. Researchers are applying Cartesian-based schemes to a broad class of problems now, and,
although there is still development work to be done, it is becoming clearer which problems are best
suited to the approach (and which are not). The purpose of this paper is to give a candid assessment,
based on applying Cartesian schemes to a variety of problems, of the strengths and weaknesses of
the approach as it is currently implemented.

BASIC ELEMENTS OF THE APPROACH

In the adaptive, cut-cell Cartesian approach, as in many adaptive-grid methods, the grid-generation
and flow-solution algorithms are strongly linked. The basic pieces of the grid-generation are: -

o A cell-based tree data structure;

o A geometry-based adaptive refinement scheme for generating an initial grid;

¢ A solution-based adaptive refinement/coarsening scheme for generating the final grid.
The basic pieces of the flow-solution algorithm are:

o A limited linear reconstruction scheme;

¢ A flux function based on an approximate Riemann solver;

¢ A multi-stage time-stepping scheme.

Each of the basic pieces of the grid-generation and the flow-solution algorithms are described briefly
in the following paragraphs. Additional pieces, such as a viscous-term discretization, cell-merging
for moving boundary problems, and multigrid acceleration have also been implemented and used in
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obtaining results presented in this paper; readers are directed to other papers for details on these
techniques.

The data structure

In the work presented in this paper, a cell-based tree data structure is used. In this approach, the
grid is represented as a tree in which cells in the grid correspond to nodes of the tree. The root of
the tree is a large cell that covers the entire solution domain. This root cell is then divided, yielding
a number of children cells which depends on the type of tree being used: two children cells for a
binary-tree-based grid; four for a quadtree-based grid; eight for an octree-based grid. In the work
presented in this paper, a quadtree data structure was used for the two-dimensional Euler results, a
binary-tree data structure was used for the Navier-Stokes results, and an octree data structure was
used for the three-dimensional Euler results.

Tree-based structures are well-suited to an adaptive Cartesian-grid approach for several reasons.
One reason is that a tree-based structure is memory-efficient; connectivity information relating cells to
neighboring cells is unnecessary, as this information can be inferred from the tree structure. Another
reason is the ease with which the grid can be adapted: local refinement simply adds children cells to
one of the nodes of the tree; local coarsening simply deletes the children cells of one of the nodes of the
tree. It should be noted that cell-based trees are not the only data structure suited to the adaptive
Cartesian approach. While the current work and the work of the TRANAIR group at Boeing [1] are
based on tree structures, the work of Berger [2] and of Quirk {3] are based on local patches of refined
grids, with each patch addressed in a structured-grid manner.

Geometry-Based Adaptive Refinement

Unquestionably the primary attraction of the cut-cell Cartesian approach arises from the quest for
“hands-off” grid generation. In the geometry-based adaptive-refinement scheme used to generate the
initial grids for calculations, both the body-surface discretization and the solution-domain volume
discretization are carried out automatically, based on a minimum of user input. The inputs to this
step are:

o A length scale for the root cell (typical value 100 chords);

¢ A maximum length scale for cells that intersect a body (typical value 0.01 chords);
¢ A maximum angle deviation between succeésive faces on a body (typical value 5°);
¢ A minimum length scale of interest (typical value 0.001 chords).

In addition, a location for the centroid of the root cell (typically the origin) is required, as is a spline
representation of the bodies in the flow.

The grid-generation algorithm makes use of these input parameters by carrying out the following
steps;

1. A root cell is constructed based on the input size and location;
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2. The root cell is recursively refined until each body has at least one cell intersecting it;

3. Cells that intersect bodies are recursively refined until the maximum body length-scale con-
straint is met (or the minimum length-scale is hit);

4. Cells that intersect bodies are recursively refined until the angle-deviation constraint is met (or
the minimum length-scale is hit).

This approach is robust, and simple to code, although it relies on recursion. Most of the time is spent
querying the spline representations of the bodies, and computing intersections of cells in the grid with
the splines. Efficient and robust coding of those intersection calculations is extremely important.
Quirk [4] uses integer arithmetic to compute these intersections, which guarantees robustness and
can resolve arbitrarily fine geometric details.

Solution-Based Adaptive Refinement

Solution-based adaptation is carried out by flagging cells for refinement or coarsening based on
heuristic criteria. The criteria used in this work are tuned to capturing regions in which compress-
ibility and/or vorticity are appreciable, and are scaled in the manner suggested by Warren et al [5]
so as to avoid over-refining high-gradient regions at the cost of smooth regions. The criteria are

T, = |V - u| A} O, = ! T2 (1)
\ n i=1 '
7y = |V x u| b} o= |23 02 )
f=1

where n is the number of cells in the grid, and A; is a length-scale associated with cell ¢. Based on
these criteria, cells are flagged for refinement if

|7e] > 0c o1 |1] > 0y (3)
and flagged for coarsening if
1 1
c — ¢ v TAlv - . 4
l'r|<10(7 and [T|<1Oa (4)

Limited Linear Reconstruction

In order for the scheme to be more than first-order accurate, a local reconstruction must be done;
in order for the scheme to yield oscillation-free results, the reconstruction must be limited. The
limited linear reconstruction here is due to Barth [6]. A least-squares gradient is calculated, using
neighboring cells, by locally solving the following non-square system for the gradient of the primitive
variable vector W by a least-squares approach

Lvw® = ¢ (5)
A$1 Ayl A 1(k)

L=| : f= : (6)
Azn Ayn AW
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where

A:l:,' = Ii— o (7)
Ay = ¥i— Yo (8)
Au; = U; —Up (9)

and the points are numbered so that 0 is cell in which the gradient is being calculated, and ¢ is one
of N neighboring cells used in the reconstruction. A cell-based minmod-type limiter is implemented
by reconstructing the solution as

W(x)=W+¢(x—%)- VW (1)

where ¢ is given by
1
wik) —maxneighborc(w(k)) l
‘W(k)-ma)fcell(w(k))l (2)
. W(")—minmighbon(w(k))!
Ik | W00 —mineen (W)

¢ = min{ ™0k

Flux Function

The flux function used is Roe’s approximate Riemann solver, described in more detail in many
references, including [7]. The inputs to the flux function are the left and right states resulting from
the limited reconstruction step described above.

Time-Stepping

A multi-stage scheme is used to advance the solution in time (in the unsteady calculations) or to
a steady state (in the steady calculations). Local time stepping is used in the steady calculations; a
cell-merging procedure is used in the unsteady calculations.

RESULTS AND OUTLOOK FOR VARIOUS CLASSES OF FLOWS

Steady, Inviscid Flows

The original drawbacks to cut-cell Cartesian approaches for solving the Euler equations were two-
fold: stability and accuracy problems associated with the small cut cells; and resolution problems due
to the regularity of Cartesian grids. With the introduction of local refinement and coarsening, the
resolution problem for these flows is basically solved for two-dimensional flows. For three-dimensional
flows, resolution problems remain, as will be described later in this section.

The accuracy and stability problems associated with the small cut cells that occur in the Cartesian
approach have been the topic of several papers. Several techniques have been developed, all of which
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Figure 1: AGARD 01 Benchmark Case — C,

alleviate the problems. Berger and Leveque [8] use a wave-propagation-based technique that allows
the time step in small cells to be computed from a CFD criterion based on the entire uncut cell.
Chern and Colella [9] use a simpler but less accurate technique based on similar concepts. DeZeeuw
and Powell [7] treat the mesh with cut cells as an unstructured mesh, and use linear reconstruction
to ensure accuracy and local time stepping to ensure stability in steady flows. For unsteady flows,
Quirk [4] and Bayyuk, Powell and Van Leer [10] use a cell-merging technique that alleviates the small
time-step problem, and also lends itself well to computing flows in which the boundaries are moving.

Results for the AGARD-1 and AGARD-3 benchmark cases are shown in Figures 1-7. The first
was run on a grid of 11,366 cells; the second on a grid of 15,234 cells. As can be seen, the adaptation
criteria capture the shocks and wakes, without overresolving other flow regions. The C, on the wing
for the first case, and the Mach number on the wing for the second case, show that the cut cells on
the wing do not lead to non-smooth values of the flow variables there.

Results for the four-element Suddhoo-Hall benchmark case, are shown in the paper by Coirier
and Powell in this volume. The comparison of computed and exact C, show that, once sufficient
adaptation has been done to resolve the flow features, the solution is smooth and matches the
analytical solution well.

Results for the “Jameson non-unique” benchmark case are shown in Figures 8-11. The grid,
shown in Figure 8, was used for all of the calculations; it has 13,613 cells. The free-stream Mach
number was set at M, = 0.78, and the angle of attack was varied incrementally, converging the
code to machine zero residuals at each angle of attack. The hysteresis effect is shown in Figure 9;
the two solutions obtained at o = —0.45° are shown in Figures 10 (obtained by decreasing the angle
of attack incrementally) and 11 (obtained by increasing the angle of attack incrementally). While
the two solutions highly resemble those originally obtained by Jameson, and the hysteresis effect is
evident, the range of M and « in which the solution was non-unique was different from that reported
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by Jameson. Running this case raised more questions than it answered for us. Further studies of the
sensitivity of the non-unique range to computational parameters will have to be carried out before
anything definitive can be said about this airfoil.

Extension of the two-dimensional scheme above to three dimensions adds complexity to the geo-
metric algorithms (such as calculating the locations at which the cells are cut by the bodies) but adds
very little to the flow solver. It is in the three-dimensional cases that the advantages of the automated
grid-generation procedure are truly seen. Preliminary results for the double-ellipsoid benchmark case
are shown in Figures 12-14.

The simplicity of the double-ellipsoid geometry hides an important inefficiency of the three-
dimensional Cartesian-based scheme, however. For problems in which, due to the geometry, gradients
are higher in one direction than another, the cost of resolving the one direction is the over-resolution
of the other direction. An example is a high-AR wing: resolving the chordwise direction well leads
to gross over-resolution of the spanwise direction, due to the isotropic nature of the grid refinement.
Allowing directional refinement will in general not help; for instance, a swept-back high-AR wing
require a large number of cells to resolve, regardless of the refinement approach used.

Memory and CPU usage for the steady-flow codes are presentied in Table 1. The times reported
are for one single-grid iteration of a four-stage time-stepping scheme. The data structure used for
the cut cells in the 3D code is a preliminary one; a code with lower memory overhead could be easily
implemented.

With the incorporation of local refinement/coarsening into Cartesian codes, and with any of the
various solutions to the small-cell problem, adaptive cut-cell Cartesian codes have reached a point
where they can compete favorably with other approaches for two-dimensional steady, inviscid flows.
The grid-generation is as automatic as totally unstructured approaches, and in some cases more
automatic, since the surface discretization of the boundaries is carried out at the same time as the
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[ ] Memory Usage | CPU usage (useconds/cell/iteration) |

2D | (30 reals + 8 ints)*nCells + (2 reals + 3 ints)*nCutCells
3D | (35 reals + 16 ints)*nCells + (38 reals + 35 ints)*nCutCells

370 (HLP 735/99)
470 (IBM RS 6000/590)

Table 1: Memory and CPU usage for Cut-Cell Cartesian Euler Codes (steady)
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Figure 12: Solution for Hermes Problem
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Figure 13: Grid for Hermes Problem
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Figure 14: Streamlines for Hermes Problem

volume discretization of the solution domain. Typically, approximately 50% more cells are required to
get the same accuracy out of a Cartesian scheme as on a body-conforming grid (see, for example [11]).

In three dimensions, the payoff of automated grid generation is even greater. However, since the
Cartesian approach is geared towards solving isotropic problems, many geometries are difficult to
resolve properly without an extremely high number of cells. This trade-off of ease of grid generation
versus efficient use of computational resources is one that is almost certainly worthwhile in the
early stages of a design process; very high-caliber calculations for use in detailed analysis of three-
dimensional flows will probably always have to be done on body-conforming grids.

Viscous Flows

The difficulties in applying Cartesian-based schemes to viscous flows are detailed in the paper by
Coirier and Powell in this volume. The two fundamental issues are:

o The difficulty in defining a viscous discretization that is positive and consistent (let alone
accurate) on the very non-smooth meshes produced by the cut-cell Cartesian approach;

e The inherent inefliciency in isotropic refinment of one cell into four for highly anisotropic
(e.g. high-Reynolds-number) problems.

It is interesting to note that the first problem is most acute:when the Reynolds number is low; the
second is most acute when the Reynods number is high. At moderate Reynolds number, a stable,
reasonably accurate scheme that makes reasonably efficient use of the computational resources can
be constructed. Flow quantities such as density, pressure and velocities can be obtained to good
accuracy; derivative quantities such as pressure gradient and Cy can not.
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Taking these issues into account, Cartesian Navier-Stokes codes will probably never play more
than a very preliminary design role in low-to-moderate Reynolds number flows, and probably have
no role in high-Re flows. For high Reynolds number flows, the best route is a viscous-inviscid coupling
approach, in which a Cartesian Euler code is coupled to an integral or finite-difference boundary-
layer code (this approach is currently under development in collaboration with Marsha Berger).
Another approach, that will require much more development but seems very promising, is to rewrite
the Navier-Stokes equations as a first-order hyperbolic system, and solve the resulting equations by
methods similar to those used for the Euler equations [12].

Unsteady Flows

The ability of the Cartesian approach to model shock physics accurately and efficiently has been
shown most impressively by Berger and Colella [13], Berger and Leveque [8] and Quirk [4, 3]. One
very promising arena for Cartesian approaches is that of problems with moving boundaries. In this
approach, the boundary is “cut” from the Cartesian mesh at each time step. An unsteady Euler
solver is implemented, that accounts for the changing areas of the cut cells of the mesh. In order to
alleviate the small time-step problem, and the problems occuring when the body covers or uncovers
a cell in one time step, a merging procedure is used [4, 10].

Results from an idealized inlet case are presented in Figures 15-17. This case is a time-accurate
simulation of an evolving flow pattern. The evolution is induced by a continuous and smooth de-
formation of boundaries resembling a supersonic inlet. The figures show the Mach number contours
and the associated grids at three points during the geometric excursion. The inflow Mach number
is 2.54 throughout. Bewteen the first and second positions, the inlet sides open up at the back
and the front and rear edges of these sides become more tapered. The sides also move apart and
the spike moves forward and contracts in the vertical direction. The. effect of this change on the
flow-field can clearly be seen. Between the second and third positions, the spike decreases in length
and its geometry changes as shown in the figures. Also the sides flatten and they move towards each
other. The final flow pattern achieves the required objective of the inlet (decelaration of the flow to
approximately Mach 1.4 with minimal losses in stagnation pressure). The location and shape of the
rear of the spike in the third position-is critical: the impinging reflected shock must fall in a region
of increasing cross-sectional area, otherwise shock system will be disgorged. The number of cells in
the mesh ranges from 17,000 at the initial time to 83,000 at the final time.

Results from a case of a body expelled from a high-pressure chamber are presented in Figures 18
and 19. In this case, the two rigid bodies and the gas are all initially stationary. The gas in
the enclosure of the larger body has a density and a pressure ten times those of the outside gas.
The boundary separating the high-pressure gas from the low-pressure gas is initially half-way down
the channel in the larger body and coincides with a plane of symmetry of the smaller body. The
simulation shows the evolution of the flow and the motion of the bodies as the compressed gas flows
through the channel. The motion of each body is computed by integrating the accelaration-due to
the net (inviscid) aerodynamic force acting on it. The grid begins with 17,000 cells; that number has
increased to 175,000 by the final time. ”

The stretching and shearing that a body-conforming mesh would undergo during these calculations
would necessitate frequent remeshing. In some sense, in the Cartesian calculation remeshing is carried
out every time step; this procedure is inexpensive in the Cartesian case, however.
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[ | Memory Usage | CPU usage (useconds/cell/iteration) |
| 2D | (15 reals + 11 ints)*nCells | 300 (2 stage scheme, HP 735/99) |

Table 2: Memory and CPU usage for Cut-Cell Cartesian Euler Code (unsteady)

Memory and CPU usage for the unsteady code are reported in Table 2.
THE BOTTOM LINE

The siren-song of totally automated grid-generation has lured a growing number of researchers to
Cartesian-based schemes.

Two-dimensional Euler solvers, both steady and unsteady, have reached a level of sophistica-
tion and maturity comparable to that of structured quadrilateral- and unstructured triangular-mesh
schemes. For these problems, the Cartesian approach is competitive with the best structured and
unstructured schemes. Grid generation is automated, user input to the codes is minimal, and the
only penalty is that more cells must be used than in a more traditional approach.

One set of problems for which the Cartesian approach promises to show real advantages over more
traditional approaches is that of inviscid flows with moving boundaries. The preliminary results
shown here, and those of Quirk [4] and Pember et al [14], for moving-boundary flows suggest that
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this class of problems may be one for which the Cartesian approach is the best suited.

For three-dimensional inviscid flows, the automated grid generation of the Cartesian approach
is even more attractive, but for one drawback. That drawback is that resolving one coordinate
direction along a body typically means over-resolving another coordinate direction, for all but the
simplest bodies. Judging by the popularity of Cartesian potential-flow solvers, however, for which
this drawback also exists, the benefit of automating the grid generation may outweigh the inefficiency
when computing geometmcally complex cases. :

Application of the Cartesian approach to solution of the Navier-Stokes equations is more prob-
lematic. At low Reynolds number, the difficulty in constructing an accurate, positive approximation
to the viscous terms is the primary problem. At high Reynolds number, the inherent inefficiency
of adapting what started out as a Cartesian mesh to non-coordinate-aligned features is the primary
problem. At moderate Reynolds numbers, Cartesian Navier-Stokes codes may be useful in prelim-
inary design, but high-caliber results will rely on a method that uses a body-conforming grid with
special treatment of the boundary-layer. For high Reynolds number flows, Cartesian Euler coupled
with a boundary-layer solver may be the most useful approach.

. More work remains to be done. Issues of accuracy and efficiency for Cartesian-based schemes
are still being resolved. However, while there are some classes of flows for which these codes will
never compete favorably with more traditional approaches, it is clear that, for other classes of flows,
Cartesian codes are not only competitive, but offer unique advantages.
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SOME OBSERVATIONS ON MESH REFINEMENT SCHEMES
APPLIED TO SHOCK WAVE PHENOMENA*
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SUMMARY

This workshop’s double-wedge test problem is taken from one of a sequence of experiments which
were performed in order to classify the various canonical interactions between a planar shock wave
.and a double wedge. Therefore to build up a reasonably broad picture of the performance of our
mesh refinement algorithm we have simulated three of these experiments and not just the workshop
case. Here, using the results from these simulations together with their experimental counterparts,
we make some general observations concerning the development of mesh refinement schemes for shock
wave phenomena.

INTRODUCTION

For problems governed by disparate physical scales, the potential savings to be gained from using
local mesh refinement are often so large that any strategy will pay handsome dividends: a poor
refinement scheme is better than none. Consequently the literature is littered with examples where
some form of mesh refinement capability has been botched in a problem specific manner. Superficially
the ‘quick and dirty’ approach appears attractive because the development costs are considerably less
than those for a general scheme. In practice, however, the development costs of a general scheme can
be recouped across a wide range of projects, and over time the cost/project becomes negligible. On
the other hand, with the one-off approach the effective costs accumulate with each passing project
and can become unexpectedly large over time. Moreover since one-off schemes rarely reach maturity,
they tend to be needlessly expensive to run. Therefore, taken overall, we feel there is no merit in
pursuing one-off refinement strategies.

Nevertheless, since an algorithm has to strike a balance between that which is desirable and that
which is practicable, an element of ‘horses for courses’ remains even amongst general purpose mesh
refinement schemes. Therefore a method, say, which was designed to provide the cheapest medium-
accuracy solution to a steady flow problem might not be competitive when it comes to producing
the most accurate solution to a time-dependent problem, and vice versa. Thus some care should be

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. .

tNew address: Graduate Aeronautical Laboratories, Mail Code 205-45, California Institute of Technology, Pasadena
CA 91125.
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taken in choosing the most appropriate form of mesh refinement before embarking on what might be
an arduous exercise in software development. Given our research interests[10], in 1988 after much
deliberation we plumped for a form of embedded mesh refinement first developed by Berger and
co-workers(1, 2, 3]. , , ;

Our formulation[10, 13] has now matured well beyond the development stage and so will not be
described here. Instead we wish to engender some discussion as to the strengths and weaknesses of
different refinement strategies as applied to investigations of shock wave phenomena. Our aim is not
to promote one scheme over another, but to reveal some pitfalls which await the unwary. Therefore to
place this discussion in the right context we will first present our numerical results for the workshop
double-wedge test problem. This problem was inspired by a series of experiments performed by
Takayama et al.[15] at Tohuku University to clarify the various types of reflection processes that can
occur when a planar shock wave interacts with a double wedge. In view of this, it is worthwhile
considering more than just the case chosen for the workshop and we will in fact present results from
three different cases.

SHOCK DOUBLE-WEDGE INTERACTIONS

With reference to the schematic shown in Figure 1, we have simulated the interaction of a planar
shock wave with three different double-wedge configurations (01, 0;). These configuration were chosen
to match those in the experiments of Takayama et al.[15]. Given the instructions for the workshop,
the flow was modelled using the two-dimensional Euler equations, taking the equation of state to be
that of a perfect gas with ratio of specific heats (v) set to 1.4 . The Mach number for the incident
shock (Ms) was taken to be 2.16 giving a pressure ratio p,/p; of 5.28. '

The computational method used for our simulations is the same as in {11] i.e. anon-body-fitted grid
was used in conjunction with a two-step finite-volume integration scheme: The effective resolution
of the grid was equivalent to that of a uniform mesh of 2240 by 1280 cells. This was obtained using
two levels of dynamic refinement, each by a factor of 4, on a uniform base grid of 140 by 80 cells.

Since this paper contains a number of interferograms and schlieren images whose sizes have been
reduced solely to keep the length of this paper within acceptable limits we have also placed them
on the World Wide Web at URL http://www.icase.edu/~jjq/flowviz/gal_dwedge.html so that
they might be viewed at their original quality.

OR O,

Mg
e
Expt. | 0; | 6,
##1 15° | 35°
#2 20° | 55°
#4 60° | 30°

Figure 1: Double-wedge configurations used in the experiments of Takayama et al{15] and our
numerical simulations.
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Experiment #1

A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 2. At
early times, frames (a) and (b), there is single Mach reflection (SMR) of the incident wave from the
first ramp. At intermediate times, frames (c) and (d), the Mack stem from this primary reflection
interacts with the second wedge giving rise to a secondary reflection which is also of type SMR.
At late times, frames (e) to (h), the secondary reflection interferes with the primary reflection. In
Figure 3 a numerical interferogram is shown with its experimental counterpart. The two images
are in good agreement, hence there is a reasonable quantitative agreement between simulation and
experiment. Nevertheless, there are some clear discrepancies on the small scale. For example, in the
experiment the base of the primary reflected shock has a small lambda foot due to its interaction
with the boundary layer on the bottom wall of the shock tube (see bottom-left corner of image). This
feature is missing in the numerical image since the simulation assumed that the flow was inviscid. In
principle, adding viscous terms to the simulation is not difficult. However, a much finer grid would
have to be used so as to resolve the relevant viscous scales. Thus the cost of the simulation would
be increased dramatically and in this instance it is debatable whether the small improvements to be

“gained by adding physical viscosity would prove cost effective

Experiment #2

A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 4. At
early times, frames (a) and (b), there is SMR of the incident wave from the first ramp as in Experiment
#1. However, at intermediate times, frames (c) and (d), the reflection of the Mach stem is now
complex Mach reflection (CMR) rather than SMR. At late times, frames (e) to (h), the secondary
reflection again interferes with the primary reflection. In Figure 5 a numerical interferogram is shown
with its experimental counterpart. The two images are in reasonable agreement, but the tie-up is
noticeably poorer than in Experiment #1. Again the discrepancies are due to the lack of physical
viscosity in the flow model. For example, in the experimental image there is a recirculation zone at
the apex of the first ramp, and the base of the secondary reflected shock has a lambda foot due to its
interaction with the boundary layer on the wedge. But these features cannot be reproduced by an
inviscid simulation. Here the shock-boundary layer interactions are stronger than in Experiment #1
and have had quite a pronounced affect on the curvature with which both the primary and secondary
reflected shocks run in to the wall. Consequently there would be some justification for switching to
a viscous simulation for this experiment.

Experiment #4

A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 6.
At early times, frames (b) to (c), the slope of the first wedge is sufficient that there is regular
reflection (RR) and not SMR as in the other two experiments. At late times, frames (d) to (h), the
incident shock diffracts around the convex corner formed by the two wedges. In Figure 7 a numerical
interferogram is shown with its experimental counterpart. The two images are in good agreement
except for those regions where viscous effects are expected to be important. Namely, the vortex core
near the convex corner, and the foot of the reflected shock where it interacts with the boundary layer
on the wall of the shock tube. This interaction affects the curvature of the reflected shock and would
seem to account for the difference in the curvature of the fringes between the computational and
experimental interferograms. However, the tie-up is sufficiently good that, as in Experiment #1, it
is not clear that a viscous simulation would be worth the extra effort involved.
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Figure 2: Sequence of schlieren snapshots from the simulation of Experiment #1.



(a) Experimental Interferogram, courtesy of Prof. Takayama

(b) Numerical Interferogram

Figure 3: Comparison between numerical and experimental interferograms for Experiment #1.
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Sequence of schlieren snapshots from the simulation of Experiment #2.




(a) Experimental Interferogram, courtesy of Prof. Takayama

Moz,

Figure 5: Comparison between numerical and experimental interferograms for Experiment #2.
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Figure 6: Sequence of schlieren snapshots from the simulation of Experiment #4.



(a) Experimental Interferogram, courtesy of Prof. Takayama

(b) Numerical Interferogram

Figure 7: Comparison between numerical and experimental interferograms for Experiment #4.
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DISCUSSION

Here we restrict ourselves to making some specific observations about the development of mesh
refinement methods for investigations of unsteady shock wave phenomena, and the reader who is
unfamiliar with the basic techniques of mesh refinement is directed to[9, 17].

The majority of mesh refinement schemes give the impression of having been designed solely to
minimize the number of grid cells that are required to compute a solution of a given resolution
or accuracy. This design philosophy is presumably based on the notion that the effort required to
integrate a discretized flow solution decreases as the number of grid cells decreases. But the following
example demonstrates that the number of grid cells can have surprisingly little bearing on the cost
of performing a time-dependent simulation and so this particular design philosophy is flawed.

Consider the propagation of a shock down a uniform mesh of N cells, each of width Az. If a
uniform time step is chosen such that the Courant number based on the speed of the shock is one
(hence the shock traverses one cell per time step), it will take N integrations of N cells for the shock
to pass through the domain i.e N? cell integrations. Now halve one cell in the grid such that there are
N —1 cells of width Az and two of width Az /2. Again if a uniform time step is used to propagate the
shock through this domain, without violating the CFL condition it will take 2/V integrations of NV +1
cells to propagate the shock through the domain i.e. 2N? + 2N integrations. Therefore although but
a single cell has been added to the grid the cost of the simulation has more than doubled. Thus for
time-dependent problems it is desirable to refine in time as well as space[10]. Here, using temporal
refinement, the two small cells would be integrated 2NV times and the other N — 1 cells would be
integrated N times as in the uniform mesh case i.e. a total of N* + 3N integrations. Thus, for
N reasonably large, the cost of the refinement becomes negligible. As an alternative to temporal
refinement one could conceivably opt for an integration scheme which was stable for large Courant
numbers, but for highly non-linear problems the loss in temporal accuracy would probably prove
unacceptable.

A temporal refinement strategy is easily incorporated into hierarchical refinement schemes such
as those based on quad-trees (e.g. [4]) or embedded patches (e.g. (3, 10]) since it is possible to
avoid ever having to interpolate across discontinuities[10]. However, a temporal refinement strategy
seems ill-suited to refinement schemes based on unstructured triangular meshes (as typified by[6]), at
least when combined with a shock-capturing methodology, since one cannot avoid having to perform
awkward non-linear interpolations at discontinuities. Such interpolations are unlikely to satisfy a
shock-capturing scheme’s unique smeared shock profile and so would result in spurious oscillations[10].
One convenient way around this difficulty would be to employ an integration scheme based on floating
shock-fitting[7, 16] rather than shock-capturing. Then there would be no smeared discontinuities and
the cause of the problem disappears. This strategy illustrates an important feature of the design of
mesh refinement methods. It is often better to work around difficulties than to attempt to effect a
cure. A refinement scheme contains many components and the best schemes seem to be those whose
components work symbiotically.

Leaving aside the issue of temporal refinement, minimizing the number of grid cells will not
automatically lead to an efficient method of refinement. Consider the case of an isolated discontinuity
which rins oblique to the grid. It is clear that cellular quad-tree refinement (say [4]) is more efficient
than embedded patch refinement (say [10]) in terms of the number of cells each method requires to
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tile the discontinuity. However, it also has the larger storage overheads per mesh cell of the two
associated data structures. For inert shock wave simulations which need only a small number of
levels of refinement the storage overheads from quad-tree refinement are easily tolerated, but this
might not be the case if the flow contained chemical reaction. Instead of a shock oblique to the grid
consider a detonation wave which in addition to a shock front has some internal structure, albeit on
a very fine scale, which must be resolved and cannot be captured. In this instance one would need a
wide swathe of cells to cover the reaction zone which might be ten or more levels of refinement down
in the quad tree because of the disparateness between the width of the reaction zone and the distance
over which the detonation wave needs to be propagated. Therefore although the cells in the swathe
are close to one another spatially they could lie far apart in the quad tree structure, which might
impact on a parallel implementation of the scheme, and each cell would introduce a large overhead
due to the accumulation of pointers down to its level in the data structure. Consequently embedded
patch refinement might now prove to be more eflicient because its storage overheads would be so
much lower and it would better preserve the proximity of cells within the reaction zone.

Adaptive mesh refinement algorithms, unlike classical numerical methods, entail quite sophisti-
cated software. Therefore arguments such as the one above must be tempered by the realization that
* specific implementation details can make or break an algorithm in terms of its practical performance.
In particular the grid data structure needs to be well crafted. For example, the data storage needs
to be flexible enough to cope with dynamic allocation and deallocation as local refinement is added
and removed, and data accesses have to be efficient so as not to impact on performance. Now since
it is all too easy to underestimate the level of commitment required to write, test and debug a pukka
mesh refinement code, any newcomer would be well advised to take his or her own software skills in
to account before choosing to code up any one particular method.

In fact the number of considerations that must be taken in to account before choosing a mesh
refinement strategy are legion, even when one’s needs are fairly specific. For example, our interests
lie in investigating complex shock-wave phenomena, and given the results from the previous section
it would appear that our refinement algorithm is well suited to our purposes. But suppose we were
dissatisfied with the quality of our results for Experiment #2 (Figure 5) and wanted to perform a
viscous simulation, would our scheme cope as well as in the inviscid case?

In the past the scheme has been used to perform viscous simulations of shock-boundary layer
interactions[10], and so there is no reason to believe that it could not cope with a viscous simulation
of Experiment #2. However, since viscous flow features tend to be anisotropic in nature, such a
simulation would expose a weakness of our refinement scheme: it does not cope very well with
anisotropic refinement. The method used[10] is basically limited to features like boundary layers
which are affixed to solid surfaces. To refine a free shear layer which might happen to lie oblique to
the mesh we would be forced to use isotropic refinement which would be needlessly expensive. This is
an example where a change in the flow model can have a significant impact on the refinement efficiency,
even though the application remains unchanged. Thus the correct choice of refinement strategy is
never straightforward. To complicate matters even further, one cannot ignore the interplay between
the method of refinement and the method of flow integration. For example, a triangular unstructured
mesh has the geometric flexibility to allow for efficient anisotropic refinement but a certain amount
of care must still be taken to generate meshes that are suitable for viscous simulations[8]. In general,
depending on the application, one might wish to compromise the refinement efficiency so as to avoid
compromising the accuracy of the flow integration (or vice versa). Of course the accuracy of a
refinement scheme is, for the most part, ordained by the monitor functions which determine where
refinement does or does not take place.
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As is common practice we employ heuristic functions to determine where to refine, and coarsening
takes place naturally by choosing not to refine and so involves no additional criteria[10]. For the
present double wedge problems we used a combination of two monitor functions: density gradients
were used to locate shocks and a local comparison between density and pressure gradients was
used to locate contact discontinuities[13]. Now there are numerous reasons why this type of heuristic
approach is unsatisfactory, not least of which is that it introduces tunable parameters and so increases
the experience factor needed to operate a refinement scheme reliably. As Warren et al.[18] have shown,
a poorly constructed heuristic monitor function can cause a mesh refinement scheme to home in on
an incorrect solution. But this can happen with any refinement function, heuristic or not, which
provides estimates for the local error without also providing estimates for how the local error affects
the global error i.e. every refinement function in common use. To a large extent the mesh refinement
community has been lulled into a false sense of security by the general experience that local errors
are often benign. The test case discussed in {18] is a gentle reminder that small local errors can
sometimes tip the balance and result in large global errors, but other more pathological examples are
not difficult to find especially where chemical reaction is involved.

- Figure 8 (a) shows a trace of the pressure behind the lead shock front of a one-dimensional
detonation wave which exhibits a galloping instability[14]. By normal standards this computation
would have been thought to be well resolved since 160 mesh points covered the so-called reaction half-
length (giving some 256,000 cells over the time period shown) when contemporary simulations have
ten or less points in the reaction half-length. However, when the simulation was repeated with the
grid spacing halved, the dynamic behaviour of the detonation wave altered dramatically, see Figure 8
(b). At first glance one might assume that Figure 8 (b) came from the coarser computation since it
looks more dissipative in that a two mode pulsation is decaying to a single mode pulsation. But in
fact it is the extra dissipation in Figure 8 (a) that sustains a spurious two mode pulsation whereas
the correct behaviour should be that of a two mode pulsation with a time-attractor limit cycle[14]
i.e. Figure 8 (b). Interestingly the difference in behaviour arises not from an error in resolving the
detonation sheck front, but from a failure to resolve an innocuous part of the reaction zone which is
smooth.
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Figure 8: Variation in the computed pressure history trace for a galloping detonation wave when the
mesh spacing is halved[14]. '
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Clearly there is much room for improvement in the current crop of criteria used to control refine-
ment. However, any attempts at devising rigorous mathematically based refinement criteria should
not ignore certain practicalities. For example, in our simulations it can be necessary to adapt the grid
tens of thousands of times[13] and so the method of determining where to refine must be reasonably
cheap otherwise it would cripple the simulation. Also, the physical scales involved are so disparate
that one cannot afford the luxury of periodically comparing the solution computed with refinement
against that computed on a uniform mesh of the same high resolution, as is effectively done in[5],
because this would require an unrealistic amount of storage. :

For practical purposes the lack of a fool-proof refinement criteria does not undermine the usefulness
of adaptive mesh refinement schemes for investigating shock wave phenomena, but it does complicate
matters. Whenever we start to investigate a new problem we perform a sensitivity study to see how
the computed results vary with, amongst other things, the effective resolution of the computational
grid as controlled by our chosen refinement criteria. Thus we tool-up to a position where we think
we can produce a reliable simulation. Note we would do more or less the same thing even if we were
not employing mesh refinement, as past performance is no real guide as to how a numerical scheme
will fair on a new problem.

- For serious investigations the cost of tooling is generally spread over a parameter study and so is
not excessive. The only drawback we find is that the results from sensitivity studies are rarely as
conclusive as we would like. Many shock wave phenomena exhibit physical instabilities and so the
notion of a grid converged solution is not always clear, or even appropriate since the flow model might
preclude the possibility of having a sensible solution in the limit of the mesh spacing going to zero. For
example, in [12] we presented results for the vortex sheet produced by a shock wave diffracting over
a knife edge. These results show that an inviscid simulation can reproduce the correct behaviour and
yet provide no limiting solution since the numerical dissipation which controls the fine scale structure
of the vortex sheet, in the absence of physical viscosity, never bottoms out as the grid is refined. On
the other hand, in some of our simulations of detonation phenomena it is clear that we are incapable
of reaching a fully converged solution either because the physical scales are too disparate for our
computing resources or the physical behaviour of the system is non-deterministic in that variations
in discretization errors, no matter how small, lead to significant variations in dynamical behaviour.

Most CFD simulations are performed with the aim of producing quantitative answers to well
understood problems, in which case the above vagaries are abhorrent. However, much of our work
is performed in an attempt to fathom behaviour which is not known and simulations are used as a
qualitative diagnostic and so a certain amount of subjectivity cannot be avoided. In short we use our
mesh refinement algorithm to perform simulations which are more detailed than would otherwise be
possible. Consequently we close this discussion without making any attempt to sell our scheme in
terms of how efficiently it was able to compute the workshop double wedge problem. While this might
be viewed as contrary we would argue that any results we could present would have little practical
value: by comparison to our recent studies[13] the present simulations are so cheap as to be almost
inconsequential. Moreover it should be appreciated that the cost of performing a time-dependent
simulation can pale into insignificance when compared to the time taken to decipher the results, and
to bandy performance figures would lose sight of the fact that our scheme has progressed well beyond
the development stage and is used as an everyday tool.
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CLOSING COMMENTS

At times adaptive mesh refinement appears to be more of an art than a science, therefore on
a self-indulgent note we close with two quotations that sum up our thoughts on this branch of
computational fluid dynamics.

The first quotation is taken from Shakespeare’s Twelfth Night and explains why we feel there will
always be a plethora of refinement schemes: “some [methods] are born great” ‘in that they are so
well suited to a particular class of problem they do not deserve to be replaced by some monolithic
refinement scheme; “some [methods] achieve greatness” when they leapfrog the field by virtue of
being able to exploit some new generation hardware feature and so methods tend to pass in and out
of fashion; “and some [methods] have greatness thrust upon ’em” in that many fluids researchers
cannot develop their own refinement code and must make do with whatever is available, so schemes
that should be put to rest will not die by dint of their users.

- Qur second quotation is attributed to the son of the author Alexandre Dumas: “All generalizations
are dangerous, even this one.” In this paper we have tried to emphasize that context is all important
where mesh refinement is concerned. Therefore whilst the subject is sorely in need of some formalism
to guide us out of the present heuristic quagmire, there needs to be a realization that not all needs are
the same. As we have shown, following rigorous criteria which are misplaced can prove disastrous.
Therefore if some of our observations appear provocative it is only because we are attempting to
correct an imbalance, as we see it, in current thinking. Grid convergence is a case in point. While
rigorous Mathematical concepts of convergence are unambiguous, the practical concept of a grid
converged solution to an unsteady problem, where the flow might be physically unstable, is hazy
to say the least. And so common ground must be found between theoreticians and the practical
exponents of mesh refinement before any real progress can be made in eliminating the heuristic
elements from today’s algorithms.
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SUMMARY

Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference
methods has been used effectively on a variety of problems in two and three dimensions. In this
paper we introduce an approach for resolving problems that involve complex geometries in which
resolution of boundary geometry is important. The complex geometry is represented by using the
method of overlapping grids, while local resolution is obtained by refining each component grid
with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm
introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid
structure for the underlying mesh. '

INTRODUCTION

Over the past decade, the Adaptive Mesh Refinement (AMR) algorithm pioneered by Berger
and Oliger [1] has proven to be a successful, efficient strategy for obtaining high-resolution solutions
to partial differential equations. Using AMR. combined with high-order upwind finite-difference
methods, one has the ability to simulate shock hydrodynamics problems, including those with
multiple materials, in both 2-D and 3-D [2, 3, 4, 5, 6] not otherwise possible within the limitations
of present computers. To date most of the developmental work done on the AMR method has
concentrated on the perfection of the adaptive algorithm, and not on the development of the
capability to represent complex geometry. A notable exception is the “Cartesian grid” method
introduced by Berger and Leveque in [7] in which complex geometry is represented by cutting holes
in an otherwise rectangular grid, and using special flux formulas in the resulting odd-shaped grid
cells at the boundary. ’

More recent work on this method is reported in [8]. The overlapping grid approach introduced
in the present paper uses a more accurate representation of boundary surfaces than the Cartesian

“This work performed under the auspices of the U.S. Department of Energy by Los Alamos National
Laboratory under Contract W-7405-ENG-36.
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grid method, although with correspondingly more work by the user required in order to construct
the initial grid. A set of curvilinear component grids is used, the union of which completely covers
the computational region. There are small regions of overlap between the individual component
grids. Each component grid is logically rectangular with some of the cells possibly “blanked” out
and unused. With this approach, a complex structure can be represented by combining many
separate pieces, each represented by its own curvilinear grid. The potential of the overlapping grid
method was first demonstrated by Starius [9, 10], Kreiss [11] and Steger et. al. [12]. Successful
three-dimensional aerodynamic simulations involving configurations as complex as the space shuttle
[13, 14], and with moving components [15], validated the usefulness of this technique as a practical
engineering tool. A fully automatic grid overlapping procedure for two- and three-dimensional grids
grids (CMPGRD) was developed by Chesshire and Henshaw which forms the basis for the current
work [16, 17, 18]. The use of overlapping grids to represent a complex geometry was dubbed the
“Chimera” method by the late Joe Steger.

The overlapping grid approach allows a great deal of flexibility in the placement of the
component grids. Since the component grids may overlap, rather than being required to match
exactly along an interface as with the block-structured grid method [19], they are relatively
unconstrained. This additional freedom allows generation of smoother component grids. This is
ideal for applying higher-order upwind finite-difference methods, since they perform best on grids
whose transformation to the unit square or cube are smooth. The finite-difference method used in
this paper is introduced in [20] and is an unsplit Godunov method based on the methods
introduced by Colella [21].

Since CMPGRD produces sets of logically rectangular grids, the extension of the AMR method
to this framework is natural. The AMR method developed in this paper follows closely the
technique discussed by Berger and Colella in [3]. Each component grid of the overlapping grid
structure is refined separately by the AMR algorithm. As in [3], the nested refinement grids are
constrained to have boundaries coinciding with the underlying “parent” component grid, i.e. none
of the refinements are allowed to be rotated with respect to that parent grid. The differences are in
the treatment of the cutout and overlap regions of the underlying overlapping-grid.

THE OVERLAPPING GRID AMR ALGORITHM

The adaptive grid construction and solution procedures on an overlapping grid are
straightforward extensions of the AMR procedures on a single grid. Modifications are made, as
necessary, to accomodate the special requirements of the overlapping grid structure. In order to
describe the grid construction and problem solution methods for overlapping grid AMR, we first
briefly describe the relevant parts of the procedures for the non-overlapping AMR and the
non-adaptive overlapping cases. For simplicity, in both cases we assume that the grid covers a
two-dimensional region.

Solution Procedure Using AMR on a Single Grid
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The basic AMR mesh construction and solution procedures are a recursive generalization of the
basic two-level procedure that we will describe here. The reader is referred to [3] for a more
detailed description. At each timestep in the two-level AMR procedure for a single underlying
“base” grid, the grid hierarchy consists of the base grid and patches of properly aligned refinement
grids that have been automatically placed by the AMR algorithm in regions where additional
solution accuracy is required. Properly aligned grids have the property that a grid at some level n
always has its boundary cells aligned with cell edges of the level n — 1 grids. In the general n-level
algorithm, the grids must have the additional property that they are properly nested, which means
that a grid at some level n is always found embedded in some subset of the level n — 1 grids. A
level n grid is not allowed to be all or partially embedded in parts of the grid structure that contain
only grids at lower levels (1,2,...,n —2).

Returning to the two-level case, all refinement grids at the fine level are automatically replaced
with new refinement grids after every m timesteps, where m is a user-specified interval. The
solution data is interpolated onto the new grid hierarchy before the calculation continues. For the
purposes of this discussion, assume that solution values are available in all cells of all grids in the
* current grid hierarchy. The grid refinement regeneration is done automatically by estimating the
error in the calculation at the current timestep on all grids, and then defining new refinement grids
in regions where the error is estimated to be higher than some user-specified tolerance. In practice,
the error estimation is done either by a Richardson-extrapolation procedure that compares
solutions on grids of different overall resolution [3, 4], or by measuring the size of local solution
gradients and refining in regions where the gradients have become unacceptably large relative to the
grid [6]. The latter approach was employed for the computations presented in the present paper.
Using one of these procedures, the error is estimated in each cell on the grid, and cells with
unacceptably high estimated error are “flagged.” Since the grid will not be refined again for m
timesteps on the base grid level, it is necessary to expand the refinement region somewhat before a
refinement grid is constructed. A simple domain-of-dependence argument requires that an
additional row of cells be added around each group of flagged cells for each timestep that the
computation will proceed without re-refinement of the grid. This is referred to as the
“cell-diffusion” step of the AMR grid construction procedure. Once this is done, the flagged cells
are grouped into “boxes”, or rectangular regions using a procedure described in [3]. Refined grids
with a user-specified refinement factor n,..s relative to the base grid are then constructed in each of
the boxes. The solution on the previous adaptive grid hierarchy is then interpolated onto the new
grid hierarchy. In regions where the solution is defined on more than one grid refinement level, the
solution values on the finest grid available are used.

Once the data is available on all of the grids in the new grid hierarchy, the solution procedure
can continue. First the coarse grid solution is advanced by one timestep in all interior cells of the
coarse grid. This includes coarse grid cells that are covered by a refined grid. Boundary conditions
for this step are assumed to be provided as part of the original problem specification. Once the
coarse grid solution has been advanced, the solution on the refinement grid patches can be
advanced. Since the solution method is explicit, the refinement grid solutions are advanced using
the same CFL timestep restriction as on the coarse grid. This means that n,,.s timesteps must be
taken on the fine grids for each single timestep on the coarse grid. Boundary conditions for each of
the refinement patches are obtained again following the principle that the “best” values available
should be taken. At fine grid boundaries where there is a refinement grid at the same refinement
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level n immediately adjacent, values from the adjacent grid are used to provide the boundary
conditions. At fine grid boundaries where the adjacent grid is at a coarser level, boundary values
are obtained by interpolating the coarse-grid solution in space and time. When advancing the
solution of a system of hyperbolic conservation laws with a conservative method, an additional
“conservative update” step is taken in which values in coarse grid cells at the coarse-fine grid
interface are recomputed using fluxes available from the fine grid calculations. Details of this
procedure are found, for example, in [3]. Finally, once fine-level values are available at the new
timestep of the coarse grid, the coarse grid solution values in cells covered by refinement patches are
replaced by transferring or interpolating fine grid values to the coarse grid cells. This assures that
the best possible values are always used in the solution procedure for the succeeding timestep.

Solution Procedure Using Overlapping Grids Without AMR

An overlapping grid in two space dimensions consists of a set of logically rectangular curvilinear
component grids that overlap where they meet and whose union completely covers the
computational domain for a system of partial differential equations. The cells on each component
grid are classified according to their function during the PDE solution procedure. “Interior™ or
“discretization™ cells are cells on a component grid that can be updated using an interior
discretization formula for the PDE. This means that each discretization cell has a buffer zone of
cells around it of sufficient width that the interior discretization formula can be applied. Near
physical boundaries of the domain, “fictitious” or “ghost” cells are added to the component grid
outside the physical boundary. Boundary conditions derived from the physical boundary conditions
for the problem, or using considerations based on numerical analysis, are used to update the
solution values in these cells. In regions of overlap between the component grids, “interpolation”
cells are included in the grid. Solution values in these cells are updated using an interpolation
formula applied to a stencil of cells on an adjacent component grid. As with the ghost cells,
interpolation cells are included in the grid to provide the necessary huffer zone around every
discretization cell so that the interior discretization formula may be applied.

The overlapping grids used in this paper are constructed using the CMPGRD overlapping grid
software developed by Chesshire and Henshaw [17], [22]. Overset grids constructed using this
software have the property that they overlap the minimum amount necessary in order that
essentially centered interpolation formulas can be used to transfer values between adjacent grids
during a PDE solution procedure. CMPGRD automatically generates an overlapping grid along
with all the data necessary for communicating data between the component grids given a set of
user-specified “component” grids, each of which is a logically-rectangular grid in general curvilinear
coordinates. If the original user-specified component grids overlap more than this minimum
required amount, the un-needed cells are marked as “inactive” and are not used in the PDE -
solution procedure. In the computations presented in this paper, CMPGRD was used both as an
interactive package for the coustruction of the initial underlying overlapping grid, and also as part
of the AMR PDE solver, where it is called as a subroutine and used for embedding AMR
refineinent grids within the underlying overlapping grid. For this project, we modified CAIPGRD to
be able to insert refinement grids adaptively during a PDE solution process. The basic principles
and algorithm details for overlapping grid construction are described in more detail in [17] and [22].
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Because of space considerations, the detailed modifications needed for the overlap algorithm for
adaptive grids will be discussed in an archival paper.

Adaptively-refined Overlapping Grids

We discuss here the procedure for advancing a PDE solution by one coarse-level timestep on an
adaptively-refined overlapping grid. An adaptively-refined overlapping grid structure consists of a
set of underlying curvilinear component grids A, B,C, ... that make up the “base grid” for the
problem, each of which may contain embedded refinement grids.

The embedded refinement grids have the property that they are both properly nested and
properly aligned with their parent component grid just as in the single grid case discussed above in
the section entitled “Solution procedure using AMR on a single grid”. If a region of refinement is

‘needed that extends beyond the boundary of active cells of one of the parent component grids and
into a region covered by the active cells of another parent component grid, each of the parent
component grids is refined separately rather than attempting to construct a single refinement patch
that covers the entire refinement region. This is an important point in our adaptive mesh
procedure, since it greatly simplifies the grid construction algorithm compared to what would be
required if general adaptive refinement grids were allowed. The interior cells of a refinement grid
patch must lie completely within the interior cell region of its parent grid(s) at the next coarser
level. If a refinement patch is created adjacent to an overlap boundary of the parent grid, its
overlap interpolation cells will lie completely within the set of overlap interpolation cells for the
parent grid(s) as well.

The overlap interpolation rules for overlap regions on an adaptively-refined overlapping grid
specify that values are interpolated from adjacent component grids preferentially from grids at the
same level, followed in preference by grids at the next coarsest level. The implicit assumption here
is that cell size and aspect ratio of grids at. the same refinement level on adjacent component grids
is roughly the same. Thus it is most appropriate to interpolate values from-adjacent grids at the
same refinement level unless such a grid is not available, in which case the best possible values
should be used. The proper-nesting assumption implies that in the latter case, the values will come
from coarser refinement levels on the adjacent grid. While it could occur that the adjacent
component grid would have values available at finer levels, interpolation from the finer level
adjacent grids is not necessary since the values would be approximately equally degraded hy
interpolating directly from the fine grids as they would be by first transferring values to the
adjacent coarse grid and then interpolating.

We now discuss the procedure for constructing the new refinement grid patches in the two-level
refinement case where the adaptive grid hierarchy consists of the base overlapping grid together
with refinement grid patches one level finer than the base grid. The solution data is assumed to be
available in all cells on all grids in the adaptive overlapping grid hierarchy at the beginning of the
coarse-grid timestep. As in the single-grid case, all the refinement grids at the fine level are
replaced at user-specified timestep intervals using the adaptive procedure. The procedure for
constructing the new refinement grid patches is essentially the same as for the one-grid case. An
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Interpolation Region Grid B*
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Interpolation Region Grid B

Figure 1: The interpolation cells for refinement grid B? lie within the interpolation region for grid
B. Interior cells for grid B? may not lie inside the interpolation region for the coarser grid.

error estimation procedure is used on each parent grid in all interior cells, and cells of high
estimated error are flagged. The set of flagged cells is then “diffused” as in the single-grid case. A
difference in the overlapping grid case, however, is that we do not permit interpolation cells on the
coarse grid to be flagged by either the error estimation or diffusion procedure. This is disallowed to
simplify the AMR solution procedure on an overlapping grid. If the diffusion procedure indicates
that an interpolation cell should be flagged, the “interpolee” cells [23] on the adjacent grid are
flagged instead (If a cell on grid A interpolates from cells on grid B, the interpolee cells for an
interpolation cell on grid A are defined to be those cells on grid B that are included in the
interpolation stencil used for determining the solution value in the interpolation cell on grid A).
This procedure of flagging interpolee cells is a logical extension to the overlapping grid case of the
basic domain-of-dependence argument for the cell-diffusion process. It also provides for the
expansion of a refinement region across overlap boundaries during the course of a time-dependent
PDE solution, which otherwise would not take place. Figures 24 illustrate the procedure with the
curved grid representing grid A and the rectilinear grid represents grid B.

The solution on an adaptively-refined overlapping grid is updated as follows. Values are first
transferred from the old adaptively-refined grid hierarchy. For interior discretization cells, this
involves either copying values from grids at the same level with the same parent grid, or
transferring values from grids at the next coarser level on the same parent grid. Values in
interpolation cells are transferred in a different way. These values must either be copied from an old
grid at the same level with the same parent component grid or they must be interpolated from data
on an adjacent component grid according to the interpolation rules given above. It is important
never to transfer coarse grid interpolation values to fine interpolation cells since a degradation of
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Figure 2: The cell on the curved grid shaded dark dark gray is flagged as a high error cell and will

be refined.

Figure 3: A single “diffusion” step of flagging surrounding cells is done. Note that interpolation cells
(lighter gray) are touched by the diffusion. These cells are only tagged for the purpose of flagging

the underlying “interpolee” cells and will not be refined.
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Figure 4: The cells are on the rectilinear grid are flagged (shaded an intermediate gray) because they
are used for interpolation data by the flagged interpolation points on the curvilinear grid.

the computed solution can result.

Away from interpolation boundaries, the solution advance procedure is identical to the
single-grid AMR procedure. The only difference in the solution advance procedure for interpolation
cells is that no conservative update procedure is used. This is largely due to the fact that we feel
that satisfactorily efficient methods for conservative update of overlap boundary values on general

overlapping grids have not been developed. Some research has been done in this area, however, cf.
[23, 24].

SOME IMPLEMENTATION DETAILS

AMR codes have greater code complexity than single or even block structured logically
rectangular grid methods. The primary reason for the programming complexity is the demands
made on the programming environment for dynamic allocation and deallocation of data structures.
Even communication hetween grids at the same or different levels is nontrivial. To handle the
programming complexity, we have begun to move to a programming language more capable in the
manipulation of complex data structures. We use C++ [25] to handle the dynamic memory
management of the data structures and FORTRAN for the numerical parts of the algorithm such as
the integration. This is the first step in moving towards a C++ based programming environment
that not only abstracts out the data structures but hides details of a parallel implementation as
well.

C++
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C++ is a superset (with some very minor exceptions) of the programming language C. For
those who appreciate C, the postfix operator " ++” is used to increment by one the variable it
follows. Therefore C++- is literally an addon to C. C++ adds new capabilities that bring it into the
realm of what is called Object Oriented Progranuning (OQP). OOP is a technique, discipline or
style of writing programs. Here algorithms are organized around data structures called objects that
both hold data and supply the functions needed to manipulate the data in safe ways. Encapsulation
is often used to describe this process. The goal of OOP is to generate reusable program modules
with few side effects. The idea seems a good and simple concept from a cominon sense viewpoint
but the implementation of flexible and reusable object libraries requires a great deal of forethought
and design. Practice shows us that several design iterations are often required to "get it right™.

The primary way C is augmented to become a language that supports OOP is through the
introduction of the data structure called a class. A class, in its most simple form, is a structure
which in turn is much like a common block in FORTRAN. However, classes are used to instantiate
objects by associating member functions with the class. Member functions are simply functions that
operate on the data within the class/structure. Once classes are introduced C++ can handle two
‘bhasic OOP programming paradigms. The first is called inheritance and the second polymorphism.

Inheritance is a mechanism of reuse of objects. New objects can be created from currently
available objects by inheritance. The inheriting objects will have all the properties of the inherited
objects plus whatever is added (data or more member functions). Inheritance facilitates a rich
structure of objects through multiple inheritance (inheriting an inherited class which may in turn
inherit other classes) yet allows the developer to encapsulate data at all levels. However, no
programming paradigm will prevent people from writing sloppy code.

Inheritance is further enhanced by Polymorphism. Polymorphism literally means many shapes.
In C++ the same function name or even operators such as ”+4", "*”, ... can be used for many
purposes. A simple example is to consider the type double, a double precision number. Doubles can
be added, subtracted, multiplied, along with a host of arithmetic operations. A simple example of
polymorphism is to define a new class that would represent complex numbers as a pair of real
numbers. Many of the same arithmetic operators that are used to manipulate doubles can be
"overloaded” to manipulate complex numbers as well. The array class library we will describe
below is another example of polymorphism.

Data Structures

The implementation of the adaptive overlapping code heavily uses classes to manipulate and
manage user data. In addition, inheritance is also incorporated to make the code much more
ammenable to modification and/or reuse. Polymorphism is used very little at this point. However,
our current direction is to use a C++ array class called A++/P++ [26] with syntax similar to F90
to develop newer versions of this and other overlapping grid codes. Here polymorphism will come
into play as we are overloading the arithmetic operations found in C or C++ to manipulate
multidimensional arrays.
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The design of the adaptive overlapping code splits the overall algorithm into two sets of pieces.
The first set is a collection of objects and functions that implement an “abstract” adaptive
overlapping code. The second piece is supplied by a code developer who wants to make his or her
own adaptive overlapping mesh code. Within the first collection are objects that describe the
logical lavout of the overlapping grids. These objects don’t perform any approximation of the
solution of PDEs but can be modified so that they do. Here inheritance is used. The abstract
objects are inherited by developer defined objects that contain the necessary data to perform useful
computations. Other objects within the abstract set develop a skeleton set of functions that give a
roadmap that can be used by code developers to modify or rebuild a new algorithm. These
functions are called virtual. When objects are inherited, the inherited object functions that are
labeled virtual can be replaced by the inheriting object. This defines a clean interface between the
developer and the abstract code. The developer has the flexibility to design the right functions for
his or her needs and the abstract interface does not have to be changed.

The primary data structure within the abstract code is a list of objects that represent
individual grids. All logical information about a component grid or any refinement is stored in what
is called a Patch class. Logical information includes logical coordinates of a grid, interpolation
information and boundary condition information. A patchNode is derived fromn a Patch so that it
can be put in a linked list class called a patchList. This linked list contains only patches at the
same refinement level on a single overlapping grid component. A levNode is derived from patchList
to be added to a list of refinement levels on a single grid. This list class is called a levList. In
addition, there are pointers within a levNode to point to list of patches on other components at the
same level. Finally a class called compNode is derived from levList to be contained in a list of
refinements at all levels on all components called a compList.

Although complex, implementation of this list structure is greatly simplified by using C++
inheritance. ‘This allows the developer to concentrate on numerical algorithms rather than the data
management aspects. Figure 5 illustrates the complete hierarchy.

The actual grid generation is performed by calling as a subroutine the CNIPGRD mesh
generation code [17} modified to generate'mesh refinements as discussed in the previous section.
Finally, many smaller objects and functions are used to help in regridding and managing refinements
within components. These objects came from a very useful and reusable C++ library from the
Center for Computational Sciences at Lawrence Livermore National Laboratory called BoxLib [27].

NUMERICAL RESULTS

The computational examples presented in this paper are two-dimensional simulations of
compressible fluid flow as described by a numerical approximation to the compressible Euler
equations. The code runs both two- and three dimensional problems but three-dimensional results
will be described in a separate journal article hecause of space limitations. In general curvlinear

coordinates, these are given by
ng

u+ Jey 0cF(u) = 0. f (1)
=1
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Grid Data Structure Hierarchy
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Figure 5: The list elements from the top are incorporated into more complex data structures further
down.
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Here
pU*
upU® + ff.p
Ft(u) =:| vpU'+ fzp ,0=1,2,3, (2)
wpU* + &p
UYpE + p)

ng

= Zfﬁ. ui
i=1

are the contravariant velocities, and Jg := (letlgﬂ is the determinant of the coordinate
transformation from Cartesian coordinates x := (x!, 2%, 2%) to curvilinear coordinates

€= (&4, €2,6%). The dependent varibles are the density p, the three components of velocity
u',i=1,2,3, and the energy E. The pressure, p is related to the other variables through the
equation of state for an ideal gas: p = (y — 1)(pE — % pYi(u')?). The finite difference method used
for the computations is hased on the conservative cell-centered upwind-centered Godunov method
in [20]. It has been modified to use a linearized approximate Riemann solver described in
unpublished work by Colella, Glaz and Ferguson. (The original method in[20] used a
computationally more expensive approximate flux function based on [28].)

Several test problems were outlined, in advance, by the conference organizers to stimulate
discussion at the workshop. We chose to compute the double wedge geometry where an oncoming
Mach 2.16 shock hits a wedge at an angle of 20 degrees followed by a wedge at an angle of 50
degrees three horizontal units later. Quiescent preshock values are unity in the pressure and
density. The ratio of the specific heats () is 1.4. Because the geometry was simple enough, two
computations were preformed. The first computation used a single grid that was deformed to fit the
double wedge geometry. The second computation uses two component grids -— the first grid being a
cartesian gfid and the second grid conforms to the wedge boundary cutting away the cartesian grid.

Figures 6 and 7 show the grids and density for times near 2.5 time units. The solutions are very
nearly the same in structure. However, single grid computation ran in twice the number of cycles
that the two grid computation did. This is primarily caused by the timestep in the single grid case
being unnecessarily CFL limited in the upper right hand corner of the computation. The two grid
case has uniform cell sizes throughout the computational region. Another issue brought out by
these computations is conservation. The two grid computation is not conservative vet still matches
the single conservative grid case. This reflects our experience that if care is taken in making sure
that cells sizes don't vary greatly from component to component then nonconservative interpolation
is sufficient for computational purposes.

The last subject to discuss is overall performance of the adaptive algorithm. At this point the
time spent in the integrator is less than 50% of the entire run time. This is primarily due to the
current implementation of the composite grid generation package. This package handles each point
on each grid separately instead of processing a list of points in a vectorized manner. We are
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Figure 6: The adaptive grids for a single base grid (top) and two base grid (bottom) computation
near time 2.5.
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currently rewriting the mesh generation package so that it can achieve vector performance.
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SUMMARY

This paper describes adaptive grid methods developped specifically for compressible flow com-
putations. The basic flow solver is a finite-volume implementation of Roe’s flux difference splitting
scheme on arbitrarily moving unstructured triangular meshes. The grid adaptation is performed ac-
cording to geometric and flow requirements. Some results are included to illustrate the potential of
the methodology.

INTRODUCTION

A large number of engineering flow problems are concerned with the numerical simulation of
unsteady compressible flows in complex geometries with moving boundaries. Examples are internal
gas dynamics with pistons, external flows with bodies in relative motion ( store separation, etc..).
Our own motivation was related to the prediction of the internal flow in a circuit-breaker, which
involves electrodes and piston in relative motion [1].

The computational tools required to tackle these type of problems are still a research area. Only
from the grid point of view, different schools can be found ranging from overset structured grids to
global unstructured- grid remeshing at each time step, and the research is still very active in this
domain.

Our own approach is to use an unstructured triangular grid. This choice was driven by many
factors. First, triangular grids offers a great flexibility in gridding complex geometries with various
length scales; second, their potential for automation and adaptation is clear; third, it simplifies the
coding of the flow solver which has no special cases to handle. From this choice, we also select to
perform adaptation by modifying thegrid with local actions because in many problems, only a small
portion of the grid need to be modified when adaptation is done. The flow solver also need to take into
account properly the grid motion and this was assured using an ALE version of Roe’s flux difference
splitting scheme. '

This technology has enable the investigation of various adaptation strategies, including a novel
shock fitting approach where the discontinuities are captured at the interfaces of two triangles.

The paper is organised as follows : we first give a description of the grid management algorithm,
followed by a few words about the moving grid flow solver. We then present various adaptive strategies
using grid relocation and grid enrichment. Finally, some conclusions are drawn.
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GRID MANAGEMENT

Temporal Evolution of the Grid

A set of curves serves to describe the geometry and its evolution is described in terms of the velocity
of these curves. The temporal evolution of the grid is performed in two steps. First, one computes
the effect of the moving curves on the grid and second, a smoothing term is added. According to
this, the velocity of the grid nodes can be represented by:

W = Wy + W,

where w, is the geometric grid velocity and w, the smoothing grid velocity. Both of these terms must
respect the boundary conditions defined by the movement of the curves.

The geometric term w, depends on the two types of curve-node interaction considered: Dirichlet
and Neumann. In a Dirichlet curve-node interaction, the velocity of the grid nodes that lie on a
moving curve is set equal to the velocity of the curve. There is no relative motion of the nodes
with respect to the curve. In a Neumann curve-node interaction, the nodal velocity is set equal to
the normal component of the curve velocity at the position of the grid node. This is the minimal
constraint which can be imposed on the grid node in order to remain on the curve.

The last situation to be considered is the curve-curve interaction. This happens when a grid node
is located at the intersection of two curves. This type of node will be constrained to remain on the
intersection of the two curves, and its velocity is simply set equal to the velocity of the intersection
of the two curves.

In addition, a smoothing of the grid velocity is performed which consists in assigning to the
internal nodes the mean velocity of their direct neighbors. This procedure is repeated for a few
iterations which normally is also limited to some selected nodes located near the moving curves. The
final result-is a diffusion-like operator which smoothes out the large variations in grid velocity and
that was found effective for the type of computations that were conducted.

The purpose of the smoothing term w, is to produce an additional smoothing of the transient
grid evolution by improving the grid quality by consideringthe node displacement. The new position
of the grid nodes is obtained as the average of the position of their neighbors. The velocity of the
grid nodes is then calculated by dividing the node translation by a time interval, which is chosen to
be the non-dimensional time scale of the problem. When this action is applied on nodes located on
a Neumann-type boundary curve, the resulting smoothing grid velocity w, must be tangential to it.
Consequently the normal component of w, is dropped out and the nodes will slide on this curve.

Grid Generation

The generation of stretched triangular grids will be performed using an incremental a,lgorithmb
which uses local actions on the grid to obtain, from a given triangulation, a new triangulation with
the required properties. The different local actions on the grid are driven by a definition of the
quality of the triangles and the different procedure will have different roles towards the reaching
of the objective. For the purpose of clarity, the quality will first be defined for an isotropic, or
non-stretched, grid and then generalized to an arbitrarily stretched triangulation.

Let us assume that we have a list of nodes N and assume that we also have an element list T
giving the connectivity of the triangulation. A triangular element is defined by three points 7., 7,
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and 7, in a counter-clockwise direction, while its side vectors are defined by Ar,, Ar, and Ar,. We
then define:

A V3Ar, x Ar,

3 (1)
B = % Z A‘I‘; . A‘l’"
=0
A is proportional to the Jacobian of the triangle (twice its area) while B is the so-called potential
energy of the triangle [2]. The dimensionless quantity

A
=3 (2)
varies from zero to one can be used as a measure of the equilarity of the triangle.
Definition of Stretching

The stretching of any triangle can be simply defined by considering its transformation into an equi-
lateral triangle. Such a transformation is built from a rotation of the system of axis to a new axis
(z',y") followed by a scaling by a factor 1/E in the direction z'. This couple (F,8) can thus be used
as the definition and measure of triangle stretching.

Quality of Stretched Triangles

The quality of a stretched triangle can now be computed. First, one has to define an objective which,
in the isotropic case, was implicitely an equilateral triangle. One thus needs a spatial distribution of
stretching amplitude and orientation which is considered as data from the mesh generation point of
view. The quality of stretched grids can now be measured: we first apply the transformation with
the couple (E,,0,) to a triangle and compute the quality of the resulting triangle in the transformed
plane as:

ol

Q=

Local Actions on the Triangulation

Several basic actions on the triangulation are performed to make the grid closer to the objective. A
remeshing algorithm based on the successive application of these operators is described in ref. [3] for
isotropic grids.

The refinement of the grid is obtained through triangle subdivision. A triangle requiring to be
refined is branched into two triangles by cutting it on it’s longest side. The lengths of the side of the
triangle are measured in the transformed plane. »

The coarsening of the grid is performed through node removal followed by a local remeshing. The
removal of a node in the triangulation leaves an open polygon. This polygon is then retriangulated
by recursively removing from it the triangle with the highest quality, until only four nodes are left.
The placement of the last diagonal is performed according to the algorithm of diagonal swapping,
described below. This process is influenced by the stretching requirements by retriangulating the
open polygon in the transformed plane.
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The swapping of diagonal is a well known technique to obtain a Delaunay triangulation from an
existing triangulation [4]. It consist in examining each pair of adjacent triangles and to select from
the two possible configurations for the diagonal side, the one which maximize the minimum angle of
the triangulation. This procedure is repeated until no more swapping occurs. Generalized Delaunay
triangulation have been proposed which introduces some notion of space transformation [5, 6, 7, 8]. In
the current implementation, each valid diagonal side is examined for swapping and the configuration
which maximize the minimum quality is choosed, where the qualities are measured in the transformed
plane.

A coarse-cure procedure has been implemented, which examines the triangulation and marks
triangles with a small quality (below 0.4) as “bad” triangles. Then, for each bad triangle, the node
opposed to the longest side( measure in the transformed plane) is deleted.

The Remeshing Algorithm

The goal of the remeshing algorithm is to produce a triangulation meeting these required area and
this, starting from the current triangulation and using the basic tools previously described. The
proposed remeshing algorithm is described in ref. [9]. The first step determines which triangles requires
refinement or coarsening and a corresponding code is attributed to each triangle. In practice, these
actions are discrete operations on the grid and some care must be taken in setting the triangle code
to avoid possible oscillations in the remeshing process, i.e. to insure a quasi-smooth grid convergence.
To do so, one has first to evaluate the average performance of the two basic operators, the refinement
and the coarsening. The refinement operator produces triangles of area half of their parent. The
coarsening operator which, in the average, will operate on nodes surrounded by 6 triangles, produces
new triangles areas of about 1.5 times the average parent area. From this basic data, the code on
triangles have been set according to the following inequalities:

IF actual area > 3/2 required area THEN set a refinement code

IF actual area < 3/4 required area THEN set a coarsening code

Geometric Requirements

The computation of flows in complex geometries with moving boundaries must also take into acount
the geometric requirements. As discussed in ref.[10], these requirements are governed by two different
aspects of the computational domain: the curvature of the bounding curves and the proximity of the
various parts of the domain.

An automatic method for computing these requirements has been described in ref [10]. The
method defines a reference grid density which respects th geometric requirements from both the
curvature and proximity point of view.

Adaptivity and Flow Coupling

Error Estimation

The principle of estimating the error by projection of the solution in a higher order subspace has been
used in the present work. Starting from an existing flow solution, which is piecewise constant in each
triangle, a projection to a piecewise linear solution is performed using the technique of Barth [11].
The error in the solution in each triangle is then estimated to be the integration of the difference

114



between the linear and constant solutions. In addition, since the error is estimated to be proportional
to the grid size (for the first order implementation of the Roe scheme), the required areas are obtained
by scaling.

Some peculiarities of compressible flow solutions must nevertheless be taken into account when
one tries to use directly this type of error estimation. In practice, and due to the intrinsic nature of
compressible flow solutions, very high ratios of minimum and maximum required areas for triangles

- will be obtained. This results in extremely small triangles in regions of high gradients of the solution

and these will reduce strongly the convergence of the computation. To overcome this problem, some
limits on smaller and larger triangles in the computational domain must be imposed.

Grid Control Strategy

We propose to start by devising a initial grid for the solution process, which will be called the
“reference grid”. The limits on the smallest and the largest triangle area are then specified in terms
of a fraction of the reference grid, and are thus locally defined. For computations in geometries which
need very high ratios of initial grid sizes, this approach is more flexible than the specification of
absolute minimum and maximum sizes. Another advantage of this approach is the ability to deal
with both the geometric and flow grid requirements during a transient solution process.

The frequency of remeshing is determined by two conditions: the geometric requirement and the
flow requirement. A geometric remeshing is performed each time that the Atgyq, which is defined as
the minimum time interval needed to reduce one of the triangle areas by one half [12], is reached. In
this grid adaptation step, very few triangles are normally involved. A fluid remeshing is carried out
after a certain number of iterations on the flow solution. The frequency of this action is determined
by a user controlled variable, as are the minimum and maximum area ratio limits.

Details about the grid management algorithms can be found in refs. (3, 9, 13, 14, 10].

FLOW SOLVER

The mathematical model describing an inviscid thermally nonconducting perfect gas is given by

the Euler system, which can be written for a general moving (or non-moving) reference frame in
integral form as:

9
at Jvy

where UT = [p, pu, pE) is the vector of dependent variables, with p, the density, u,the fluid velocity,
and E the specific energy. The term FT = [p(u — w), p(u — w)u + Ip,p(u — w)E + up] is the
flux tensor,where w is the mesh velocity, p is the pressure, and I is the unit tensor. The variable n
indicates the outward unit vector normal to the boundary. The symbol f denotes external sources
from the physics or from the axisymmetric formulation. In this case, fT = [0,e,p/y,0]. These
conservation laws are completed by the equation of state p = (y — 1)pE.

The associated discrete approach to the above integral equations is referred to as a Finite-Volume

method. For the case of non-moving meshes, with no source terms, and using an explicit procedure,
the variables U™*! are updated by:

Udv + }{S o Fs= [, sV (3)

Vit

Uttt = yn — 71; (E Fi(Qi)) (4)
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where F; represents the discrete flux through a face B; during a time interval A¢ and V™, the volume
of the cell.

Among the different possibilities to obtain the flux vectors on the cell faces, the methods based on
the solution of a set of local Riemann problems are used frequently. As their exact solution is costly,
several approximate alternatives have been proposed, one of these being introduced by Roe [15].
Roe’s Scheme for Moving Grids

The ingenuity of Roe’s procedure relies on the definition of an average state A* which approximates
the Jacobian A = ZE of the equation & = 2E = AZ. This average state can be obtained on
the basis of the quadratic character of the variables: ./p,/pu,./pv, /ph. Using this information,
averaged right eingenvectors ey, eigenvalues A\;,and wave strengths aj can be obtained. Then it is

possible to define the flux at a face, say, i+1/2 as:

1 .
Fiyy = 5P+ Fi— |AF|;yg] with [AF|;, g =3 onlles ()

~ This method can be extended to ‘moving grids in a simple manner. For example, for a grid node
moving with a velocity w,the wave speed Ay = (u — a) (where a is the speed of sound), becomes:
A1 = (v — a — w).On the other hand the flux F(u) now transforms to F'(u — w). In this respect there
are two fundamental remarks to be done. First, this modification only affects the convective terms.
Second, the grid motion is characterized by the face velocity which is defined by:

AV
T (©)
where S represents the face area at a given time, and AV the volumetric increment along a face.
Details of this fundamental approach are given in [12].
Applying these ideas, the updated variable U™*! can be computed by:
It can be realized that the term in brackets corresponds to the advanced flow variable U™*!
computed after Eq. 4, with the term @); modified to Q); — AV;. More details concerning the extended
Roe’s scheme for moving grids can be found in ref. [16).

ADAPTIVE METHODS
Grid Optimization

A spring smoothing scheme is derived by minimizing the function that represents the total poten-
tial energy of the triangulation given by:

®=>) «B (8)

T

where & is a penalty for the spring system. The Laplacian smoothing scheme is obtained by using
& = 1. However, the penalty can be accomplished differently for a better control of the grid. Such
a penalty was introduced by Kennon and Anderson [2] to treat the case of non-convex domains and
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k = 1/A was used. In the current work, the spring constants are choosed as a function of the qualities,
such that:

k& =¢(Q) (9)

where ¢(Q) is a function that depends only on the quality of the triangle. Since the Eq. 8 is continuous

with respect to the position of the nodes r, a minimum of the function will be found when the gradient
“of Eq. 8 with respect to r is zero.

Optimization of Stretched Triangles

Following the previous discussions and definitions, a generalized form of the non-linear spring system
given by Eq. 8 and 9 can be obtained by the minimization of the function:

® = }q_; #(Q)B (10)

Minimization Methodology

The previously defined optimization problem is then solved using the gradient method of steepest
descent. It is well known that this simple algorithm can converges very slowly but it is sufficient to
test the formulation of the problem and the implementation of some more sophisticated optimization
strategies are reported to a future work.

Details about the various adaptive strategies can be found in refs. [17, 18]

Example

The optimization strategy is applied to the computation of a shock reflection problem. The initial
grid and solution are reproduced on Fig. 1. The shock is diffused over two or three cells. Starting
from this solution, requirements on grid stretching and orientations have been set according to the
gradient of the density.

Figure 2 illustrate the final grid and solution. A comparison of the optimized and initial grid is
presented on Fig. 3 where it beomes evident that this type of adaptation is a serious alternative to
grid refinement. ‘
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' Figure 1: Initial grid and isoMach lines.

Figure 2: Optimized grid and isoMach lines.
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Figure 3: Density profiles for the initial and optimized grids.

Shock Fitting

The adaptation to discontinuities such as shock waves has been a persistent problem in the nu-
merical simulation of compressible flows. The weakness of the shock capturing approach is that the
shocks are captured over several grid points. While the sharpness of these discontinuities can be im-
proved by refining the grid in the vicinity of these regions, this leads to computing costs due the large
number of elements and the decrease of the global time step particularly in 2 or 3D space dimension.
The shock-fitting approach and recent variants such as the A-scheme have fared better on the second
count with some severe limitations on the topology of interaction patterns.

Resolving these problems requires addressing some fundamental and technological issues relating
to the correct computation of shock discontinuities and their detection. Until recently it was felt that
applying the Rankine-Hugoniot relations was the only way to achieve the exact jump conditions. With
the Roe scheme, it is possible, although this is not generally appreciated, to obtain the exact jump
provided the shock and the cell face are aligned. The problem of shock detection and tracking does
not have rigourous foundations and is still largely based on heuristics. However a recent study [19]
has proposed a model for the wave propagation phenomena. In this model three basic waves are
identified and relations to compute the directions and strengths of these from the basic variables are
given. It is possible, to extract information from the flow field this model to align locally the mesh.
Coupled with a grid adaptivity algorithm, it is felt this model can produce the local grid alignment
to allow the correct jump calculation and sharp shock resolution by the Roe scheme.

In the present section, a methodology is described to perform these tasks. The basic idea in the
present method is to adapt dynamically the mesh to fit discontinuities in the flow. This involves
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two fundamental capabilities: the first one is to detect accurately the various wave patterns of the
flow; the second one is to perform the required actions on the grid to align it with discontinuities.
The adjusment of the grid must be carried out without perturbing the solution because the method
is to be applied to unsteady flows and because the convergence of the process will be improved if
unphysical perturbations are avoided.

In the present work, feature detection is performed using the wave model proposed by Roe. This
model has demonstrated its accuracy to capture oblique shock waves as well as contact discontinuities.
A full description of this wave model is found in Ref. [19]. Application of this wave model requires
the flow gradients. In the present finite-volume scheme, the flow properties are piecewise constants
for the first order scheme and piecewise linear for the second order scheme and for both schemes are
stored at the centers of the triangles. The flow gradients are computed at the triangle center using
a standard Gauss quadrature involving all the triangles sharing a common node with the considered
triangle.

Identification of the Flow Features

The wave model used in this study is based on a superposition of linear waves and is not capable
of representing genuinely non-linear waves and discontinuities. But this is not critical because it is
not used for that purpose. What is required is the detection of a dominant wave and its angle. On-
the other hand, when the model is applied in regions of discontinuities such as shocks or slip lines,
a correct physical behaviour will be captured by the model. More specifically, a shock wave will be
seen as a strong acoustic wave, a slip line will be represented by a shear wave and a moving contact
discontinuity as an entropy wave. This correspondance is at the basis of the detection algorithm.

The detection process involves the filtering of the waves which comprises two operations. First,
the weak waves are discarded, based on the relative strength of each wave. The criteria for this step
has been fixed at ten percent of the maximum wave intensity over the whole domain. Second, only
one wave needs to be selected for each triangle. In this case, a wave is retained if it has a strength of
an order of .magnitude greater that the other waves in the same element.

After this process, most of the triangles will have their waves discarded, except triangles near
discontinuities, dividing the whole triangulation in two groups: the active group comprising triangles
with only one strong wave and the non-active group comprising triangles without a dominant wave.

Adaptation

The grid management is a critical aspect of the algorithm. It is performed with three basic actions:
i) orientation of some edges of the triangulation to align them perpendicular to the wave direction;
i1) translation of the edges to follow moving discontinuities; and iii) removal ill shaped triangles. In
addition a grid adaptivity procedure can be superimposed on these algorithms.

Orientation of the edges The orientation of the edges is obtained from the output of the feature
detection phase of the method based on the wave model. As described in section 3.2, this is a set of
triangles for which a dominant wave has been identified. Only the orientation of this wave is used to
modify the orientation of the grid.

The list of triangles in the active group is converted into a list of active edges. For each triangle,
an edge is selected which is the most perpendicular to the main wave; and the an edge becomes
active only if it is selected by its two neighbor triangles. With this list of active edges, an attempt
is made to orient these edges perpendically to the dominant. As conflicting requirements can result
from different wave directions, this is carried out globally through an optimisation procedure. A
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function that represents the vector product between the normalized wave orientation vector and the
normalized side vector is constructed. The minimization is performed using a gradient method based
on the steepest descent technique.
Translation of the edges The translation is performed to move the edges directly on the shock or
slip lines. One is reminded that the third condition on Roe’s average state matrix is another form of
the Rankine- Hugoniot condition. This is obtained by adding at each node the velocity of the main
" wave in the direction detected by the wave model. For this action, the velocity of the main wave is
taken from the flux eigenvalues provided by Roe’s scheme which are more accurate than the wave’
speeds computed by the wave model, because of the Gauss quadrature required for the latter. For
steady discontinuities the movement converges to an accurate positioning of the edges directly on the
discontinuities. For unsteady flows, the velocity obtained at each node is the sum of two velocities,
one of which follows the normal movement of the discontinuity and the other that rotates the edge
about the discontinuity.

Flow Over a Wedge

This first test case will be used to illustrate how the method works. It consists of a Mach 2 flow
incident over a 10 degree wedge. The effect of the various actions involved in the process of grid
adaptation will be investigated in a systematic way. The starting point of the adaptation process is
the grid and solution represented on fig. 4. The oblique shock wave is captured by the scheme and
extends over approximately two to three cells. In a first computation, the method was used without
cure and adaptation. This means that the grid connectivity remains unchanged as the grid nodes
move. After a few time steps, the grid motion and the optimization phase of the algorithm have
almost succeeded in aligning the grid with the shock wave. This is illustrated on fig. 5 together with
the current grid velocity, as computed by the algorithm.

After a few hundred time steps, some triangles tend to degenerate along the shock line, as shown
in fig. 6. This is attributable to the translation grid velocities which attempts to bring grid lines from
both side of the shock to the shock position directly. At this point, the algorithm almost stops due
to the time step limitation given by the CFL criteria. The solution obtained is represented on fig. 6
in the form of a step function of the Mach number. It can be appreciated on this figure that even
if the algorithm stops because of a degenerated triangle, the overall solution is improved compared
to the initial solution. However, further improvements are straigtforward if one now allows for some
cure action of the grid.

In a second computation, grid cure was allowed while adaptation was still unused. The actions
on the grid are thus limited to node removal and the result is that the number of grid nodes will be
reduced as the grid is cured. _

The results obtained with this procedure are shown on Fig. 7. One can see the ability of the
method to align grid lines with the shock. However, as the grid becomes coarser, the ability of
the wave model to correctly indicate the wave angle becomes problematic. It is thus suggested to
complement the coarse cure method by a local remeshing including refinement.

The third result to be presented thus allows some kind of refinement of the grid. However, to
simplify the analysis, the control of the remeshing is based purely on geometrical data, i.e. the flow
has no influence on this refinement. The refinement criteria was the following: a triangle is refined if
its area is 1.5 times the reference area value, which is the value of the triangle over of the initial grid
at the same spatial location. The refinement is performed by disecting the triangle along its longest
side. This insures that the grid size distribution will remains almost identical to the initial grid. The

121



resulting grid and Mach number distribution are presented on Fig. 8. The shock is clearly identified
on the grid itself and the Mach number distribution is sharply discontinuous.

N

F I

Figure 4: Initial grid and Mach graph.
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Figure 5: Grid and grid velocities after a few time steps.

Figure 6: Grid and Mach graph without cure and adaptation.
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Figure 8: Grid and Mach graph with cure and adaptation.



CONCLUSION

This paper has presented a set of methods for the computation of complex 2D compressible flows
in domains with moving boundaries. It has been shown that the complete methodology provides a
comprehensive tool for the solution various problems of engineering.

However, more work still need to be done on specific aspects to improve the accuracy and reliability
of the method. More specifically, our future work will be concentrated on :

e develop a conservative interpolation algorithm for coarsening operations

e develop a more rigourous error estimator to drive the adaptation process -

e quantify the performance of our adaptive methods
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SUMMARY

In recent work we have formulated a new approach to compressible flow simulation, combining
the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme
discretization on unstructured meshes, we warp the mesh while marching to steady state, so that
mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting
Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which
yields shock-fitted accuracy at convergence.

INTRODUCTION

One of the principal difficulties in computing compressible flows is that such flows are generally
only piecewise smooth. The solutions are smooth, except along a sequence of arcs or surfaces at
which the solution or its derivatives have jump discontinuities. In the vicinity of these
discontinuities, difference approximations are problematic. Moreover, errors at shocks can
contaminate the solution everywhere.

There are two basic approaches to computation of compressible flows, shock-capturing and
shock-fitting. Shock-capturing, in which one applies a well chosen difference scheme throughout the
flow field, is effective and reliable, but is usually only first order accurate near shocks. Such schemes
smear shocks over several mesh cells, limiting the accuracy and resolution obtainable.

The alternative is shock-fitting, in which the shocks are treated as internal boundaries in the
flow across which one applies the Rankine-Hugoniot jump conditions. Shock-fitting algorithms can
achieve an arbitrarily high order of accuracy, though properly locating shocks is difficult, especially
for flows containing complex embedded shocks.

In recent work we have formulated a new approach to compressible flow simulation, combining
the advantages of shock-fitting and shock-capturing. The fundamental difficulty in shock-fitting has
always been that of unambiguously detecting and locating shocks. In simple cases, such as that of a
strong bow shock, one has enough apriori knowledge of the shock location that fitting schemes are
highly successful. However, in more complex situations, shock-fitting becomes difficult and
unreliable. For this reason, given the simplicity and effectiveness of modern shock-capturing

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480.
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schemes, the latter have come to dominate computational aerodynamics, despite their limited
resolution.

The new approach we are exploring begins with a cell-centered Roe discretization, on
unstructured meshes [1]. Roe’s scheme is a popular and effective method, which has an interesting
property: at steady state, this scheme imposes the exact Rankine-Hugoniot jump conditions on any
cell face which is oriented to and lying along a shock or other flow discontinuity. Thus if we warp
the mesh while marching to steady state, so that shocks and other discontinuities lie along cell
faces, Roe’s scheme gives virtually exact answers there. This is the basic idea of the Shock-fitting
Lagrangian Adaptive Method. SLAM is, in effect, a reliable shock-capturing algorithm, which
incidentally yields shock-fitted solutions at convergence, with the attendant improvement in
accuracy and resolution.

RELATED WORK

‘While shock-fitting has existed for decades [2, 3, 4], the idea of warping an unstructured grid in a
shock-capturing code to effectively fit shocks is new. The basic idea of using a conservative
shock-capturing scheme on unstructured meshes, and warping the mesh to fit shocks during
iteration to convergence, was independently developed by several groups, including ourselves.

All three of the groups we are aware of used algorithms based on Roe-scheme discretizations, but
beyond that the details of these approaches differ. Parpia and Parikh [5] use the waves occuring in
a six-wave multidimensional Riemann solver to align mesh edges with shocks, without actually
fitting shocks. The multidimensional Riemann solver, due originally to Roe, is described in
references [6, 7]. Aligning the grid allows them to achieve true “one-point” shocks, free of the
“splitting error” that occurs when shocks cross the mesh at an oblique angle. The other group,
Trepanier et al., also used the six-wave multidimensional Riemann solver to control mesh warping
[8, 9]. However, unlike Parpia and Parikh, they also move mesh edges to coincide with shocks, thus
obtaining shock-fitting accuracy in the final solution.

Our algorithm is similar to that of Trepanier et al., differing in that we warp the mesh using only
density gradients, rather than using the waves occuring in a multidimensional Riemann solver.
Thus unlike these other groups, we do not need a separate discretization to control mesh movement.
In effect, we are reusing information from the Roe scheme discretization.

ALGORITHM DESIGN

The discretization used here is the cell centered Roe scheme. This is an effective and heavily
used scheme, whose occasional failings are now well understood and easily overcome [10]. In our
algorithm we march to steady state using the Roe scheme coupled to a “locally implicit” time
stepping scheme [1]. For the first 30 or 40 iterations, we keep the mesh frozen, allowing initial-
transients to dissipate. After that, we allow the mesh to warp at each time step to fit the
developing shocks.
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Figure 1: Attraction of Vertices to Shock

Our scheme for warping the mesh consists of two separate components:
1. A shock detector

2. A vertex attraction force

The latter is applied only at points detected as shocks. There is no direct consideration of either
attracting or orienting edges, we simply attract vertices to shocks. In effect, we are making use of
the following principle:

When two vertices of a triangle (or three of a tetrahedron) lie on a
straight shock, the intervening cell face exactly fits the shock.

Our current shock detector uses density gradients at the vertices, computed, for example, by
Green’s theorem path integrals. Let ¢ denote the density gradient at vertex v and time step n. For
all neighboring vertices, a of v, define a weight

wg = [(a=v)-g7|

where - denotes the normal inner product. Then we take the weighted average of gradient norms,
with
respect to these weights:
oo Loneighbors Wy 1195 ||
N Eneighbars wg
We flag points at which the density gradient exceeds this average of gradients at surrounding
points. In particular, we threshold the quantity ‘

maz(0, |lgyll — <)
losll + ¢~

where € > 0 is needed to avoid division by zero in smooth regions. With both numerator and
denominator proportional to the density gradient (neglecting epsilon), this detector is equally
effective at detecting weak and strong shocks.

Once we have flagged the vertices along the shock, we attract vertices to the shock, by applying
forces to each shocked vertex. The force at vertex v in our scheme is of the form:

e3

n g
* gzl

That is, a scalar multiple, of the unit vector in the direction of the density gradient. The scale
factor s

S

e3

sy = hy (o —0y) &
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with:

hY .. local mesh size

/O angle-weighted vertex average
/O local ambient density

O e magnitude of local density range

We take h" to be the minimum length of edges incident on v, while p? is the angle-weighted vertex
average, as before.

Quantities §7 and p both depend on the range of density in a small surrounding region. Define
the “local maximum density” p}, as the maximum density in cells touching vertices neighboring v.
Thus p},, is the maximum density in the 20 or so surrounding cells. Similarly, define the “local
minimum density” pg,, as the minimum density in these surrounding cells. Then the local density
range is:

6‘3 = p"lz,'U - pg,v

Similarly, the local “ambient density” is

Py = (Pl + £0,)/2

Note that this is an average of density extremes, as opposed to a direct average of densities.

The motivation behind all of this is the following. A vertex along a shock is correctly located
when the density value there is midway the high and low density in a surrounding region. Thus we
want to satisfy the equation

Py = Py
at vertices along shocks. The scale factor s approximates the amount of the correction needed to
satisfy this equation. Since we adjust the grid at every iteration, the precise scale factor used is
unimportant; in effect it is just a relaxation parameter.

MESH CONTROL

In our scheme, vertices are rapidly attracted to shocks. However, without constraints on mesh
movement, one rapidly produces undesirably thin cells, or negative cell areas. To avoid this two
things are needed:

1. mesh control forces, partially counteracting the forces attracting shocks to vertices.
2. mesh movement step-size control.

We are currently using two forces, one proportional to the change in cell area, another based on
angles at vertices. The latter, which applies torques on edges, prevents angles from approaching
either 0 or 180 degrees. As angles approach either 0 or 180 degrees, the torques it produces become
infinite. Thus if the ODE governing mesh movement is properly integrated, degenerate triangles
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cannot occur. By contrast, using “springs” on edges is not effective, since they cannot prevent
angles from approaching 0 or 180 degrees.

There are a number of ways to control the step-size in the mesh movement scheme. Our approach
is to compute a maximum step at each vertex, designed to prevent degenerate triangles. For every
triangular cell R let A,,,(T) be the minimum of the three altitudes. Then for each vertex define

hmin(v) = min hmin(R)

neighboring triangles

If no vertex v moves further than 1A (v), degenerate triangles cannot occur.

Note that controlling step-size alone suffices to prevent degenerate triangles, but grid quality
may be quite poor. The combination of these mesh control forces and step-size control suffices to
maintaining mesh quality, while still allowing effective fitting of shocks.

GENERALIZED VAN ALBADA LIMITER

_ The first order scheme just described works well, but provides inadequate resolution in smooth
regions. Second or third order accuracy can be achieved with a MUSCL-style scheme [11], in which
one reconstructs a polynomial in every cell via an appropriate “limiter.” One way of doing this is to
adapt the stencils, following the ENO approach. However ENO is complex and expensive on
unstructured meshes [12].

Our approach is, instead, to use a multidimensional generalization of the Van Albada limiter
[13]. This limiter is simple, reliable, and has the attractive property of not clipping extrema. Thus
it can, in principle, achieve perfectly sharp approximations of N-waves on very coarse meshes.

The goal in a MUSCL scheme is to replace the constant value in each cell by a linearly varying
distribution

¢"(n) = & + (n—n)(é9)f
where (6¢)% is an approximation to the gradient. The Van Albada limiter takes this gradient as a
nonlinear average of the gradients computed by forward and backward differencing;:

(bq)f = ave(qiy — ' a — ¢i),
using the averaging function
B®+e)a + (a®>+€¥)b
a2 + b + 2 ¢ ’
where epsilon is a small positive constant designed to provide smooth transitions. This kind of
averaging was used in [13] for all quantities except density, which was handled slightly differently to

avoid negative overshoots in strong astrophysical flows.

The Van Albada limiter generalizes easily to unstructured meshes. To see this, rewrite the above
formulas as

ave (a,b) =

(69)F = wa (gl —a) + wo (¢ —qiy),
with:
(82 + €)
W, = 3
a2 4 b2 4 2 ¢2
(a® + €
Wy
a? + b2 4+ 2¢?
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Now in a similar way, for triangular mesh cells, assume one has gradients g*, g7, g* at the vertices
of a triangle, obtained, as usual, by Green’s theorem path integrals. Then one can compute the cell

centered gradient as
n

" = wag; + wy gy + we g7

for suitable weights wa,k wy, w.. Constraining these weights by
w, + wp + w, = 1

W, wp, we € [0,1].

yields second order consistency of the overall scheme, assuming the nodal gradients are first order
accurate. We also want to preserve the Van Albada property of not clipping extrema. The
particular choice we used was

(be + €)
ab+ be+ ca+3e’

(ca + €)
ab+ bec+ cat+3e

(a b + €)
ab+ be + ca+3e’

with @ = ||ga]|?, b = lgs]?, ¢ = ||gcl|*. Other choices work about as well. In particular, one can
chose

¢ = |lgall, b = llgell, ¢ = llgell,

in closer analogy with the original Van Albada scheme. We prefer the stronger switching that
occurs in using the squares. ,

This generalized Van Albada limiter has the property that near strong jumps the reconstructed
gradients use information entirely from one side of the jump, thus achieving second-order
consistency while avoiding spurious oscillations. Thus one can think of this as an inexpensive
approach to ENO, avoiding the use of complex adaptive stencils and to some extent the
convergence difficulties they create.

EXPERIMENTAL RESULTS

Results obtained with SLAM, while preliminary, seem quite promising. We have, in general, no
trouble with strong shocks, including attached and detached bow shocks, fish tail shocks, and
standing shocks on transonic airfoils. Similar techniques can be used to resolve slip lines and
contacts [9], though we have not yet studied this.

Figure 2 shows an un-adapted mesh of 8,000 points around a 10% circular arc airfoil, while
Figure 3 shows the same mesh after modification by SLAM to align mesh edges with shocks.
Figure 4 shows the density field on this 8,000 point adapted mesh. The shocks are sharp all the way
to the far-field boundary, and the limiter is also producing an accurate solution in the smooth
region between shocks. '
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One can judge the solution more accurately by taking cross sections. Figures [6-7] show density
contours on cross sections one and four chords from the axis, computed using the the 8,000 point
mesh in Figure 3. As can be seen, the sonic-boom profile is well captured, even four chords from
the axis. These solutions are mesh-converged to graphical accuracy in the smooth regions.
However, there is a slight anticipation of the bow shock, due to small errors in the shock location.
This is caused by several numerical effects, which create second-order errors in the shock location.

For this simple problem, one can obtain qualitatively reasonable solutions via SLAM, using as
few than 1,000 mesh points. However, accuracy is lacking until the smooth regions are resolved. By
contrast, Figures [8-9] show the solution on the un-adapted 8,000 point mesh of Figure 2, one and
four chords from the axis. With the Lagrangian mesh adaptivity turned off, the sonic boom profiles
are now badly distorted. Figures [10-11] show the same solution on a 32,000 point mesh. The
solution is still quite smeared, even though this is a second order accurate scheme, and we made a
real effort to locate mesh in regions where the sonic boom was expected.

On the 8,000 point mesh, at four chords from the axis, Figure 9, the bow and tail shocks are
separated by about 15 mesh widths. Thus significant smearing is inevitable. This smearing is not
as severe on the 32,000 point mesh, which has four times the mesh density throughout the flow
field, but the answer there is still much poorer than the SLAM solutions on the 8,000 point mesh.
In particular, comparing Figures 11 and 7, notice that the extrema are substantially blurred on the
32,000 point un-adapted mesh. The combination of Lagrangian adaptivity and our generalized Van
Albada limiter is particularly effective at getting the extrema right.

Figure 5 shows a more complicated example, flow over an airfoil with a perfectly sharp nose.
Since the interior angle at the nose of this airfoil is zero, there is no shock there. Instead, a lambda
shock forms in the free stream, some distance away, where the acoustic waves coalesce. Figures 12
show the density cross section just off the body (0.1 chords from the axis). The smooth profile at
the nose in Figure 12 rapidly steepens into a shock. By 0.4 chords, shown in Figure 13, the eventual
N-wave solution is beginning to form.

The point of this second example is that, unlike most shock-fitting schemes, the Lagrangian
adaptive scheme has no effect on the underlying conservative discretization. Thus examples like
this, with coalescing waves, intersecting shocks, and so on, present no difficulty, at least in principal.

We are in the process of comparing the SLAM algorithm with standard mesh-enrichment
schemes. SLAM achieves shock-fitted accuracy without addition of mesh points, while enrichment
strategies substantially increase the number of mesh points, and still produce diffused shocks. Thus
SLAM should, in general, require about one tenth as many mesh points as mesh-enrichment
schemes in 2D, and should be relatively even better in 3D. The results of such a comparison will be
reported in a sequel.

CONCLUSIONS

Lagrangian adaptive grid methods, like SLAM, have great potential for resolving shocks and
other flow discontinuities. Unlike mesh-enrichment strategies, which put much finer mesh along
shocks, fitting strategies can resolve discontinuities without increasing the number of mesh cells.
This advantage is especially important in three dimensions, where the cost of tiling shocks with fine
mesh is great. This improved resolution is achieved at little cost, and without loss of robustness,
since we retain a Roe scheme-based shock capturing scheme. Thus even if the fitting scheme fails,
we still have a robust and effective shock-capturing algorithm. '
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We have demonstrated the efficacy of SLAM in 2D, and are beginning work on an analogous 3D
code. The latter is intended to be applied to the problem of predicting the sonic boom profiles of
supersonic aircraft. Current CFD codes cannot adequately resolve the complex shock waves
emanating from a supersonic vehicle, since one cannot afford a sufficiently fine grid extending
several body-lengths from the aircraft. Fitting schemes, like SLAM, will be able to do much better,
_ and should be able to reproduce the complex shock patterns observed in wind-tunnel experiments.
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Abstract

A method for generating high quality unstructured triangular grids for high Reynolds
number Navier-Stokes calculations about complex geometries is described. Careful attention
is paid in the mesh generation process to resolving efficiently the disparate length scales which
arise in these flows. First the surface mesh is constructed in a way which ensures that the
geometry is faithfully represented. The volume mesh generation then proceeds in two phases
thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A
solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features
is also described. The procedure for tracking wakes and refinement criteria appropriate for
shock detection are described. Although at present it has only been implemented in two
dimensions, the grid generation process has been designed with the extension to three
dimensions in mind. An implicit, higher-order, upwind method is also presented for
computing compressible turbulent flows on these meshes. Two recently developed
one-equation turbulence models have been implemented to simulate the effects of the fluid
turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are
presented which clearly show the improved resolution obtainable.

1 Introduction

The desire in the engineering community to simulate numerically flows about increasingly
complex geometries has fueled interest in the development of unstructured grid methods. These
methods provide great flexibility in dealing with the complex geometries encountered in practice
and offer a natural framework for solution-adaptive mesh refinement. As attention has turned to
solutions of the full Navier-Stokes equations, several methods have been recently developed to
address the special requirements imposed on the grid generator. At the high Reynolds numbers
encountered in typical aerodynamic applications, the viscous effects are felt predominantly in the
very thin boundary layers adjacent to solid surfaces and in the wakes. In these regions, the normal
length scale can be many orders of magnitude smaller than the tangential length scale. For
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efficiency this requires that the mesh be highly stretched in the viscous regions while local isotropy
is desired in the mainly inviscid regions of the flow.

The generation of an unstructured triangular mesh for a complex geometry is usually
accomplished in two phases. In the first, the boundaries of the domain are discretized to form the
surface mesh. During this phase, one desires a method which renders a faithful discretization of the
geometry by taking into account effects such as curvature and proximity to nearby bodies [1]. In
the next phase of the process, the volume mesh is generated filling the domain with triangles. A
number of special techniques have been developed to generate the highly stretched elements which
are desired in the thin boundary layers and wakes encountered in high Reynolds number flows.
Some of these methods use portions of a structured or semi-structured mesh in the viscous regions
which are then matched up with an unstructured mesh in the inviscid regions [2]. Another
approach is to generate the mesh using prismatic elements [3]. Others are based on modifications
to the Delaunay triangulation [4, 5] or to the advancing front method [6, 7).

A variety of algorithms have appeared for solving the compressible Navier-Stokes equations on
unstructured meshes. They range from implicit solvers employing upwind methods [8, 9] to
multigrid solvers based on a Galerkin finite element technique [10]. Progress has also recently been
made in the development of turbulence models which are well-suited to implementation on
unstructured meshes [11, 12].

In this work, a method for generating unstructured meshes suitable for high Reynolds number
Navier-Stokes flows is described. First the viscous regions are meshed using a node lifting
procedure which is a node-based advancing front method. The inviscid regions are then meshed
with the traditional face-based advancing front method. A remeshing strategy is also described in
which the solution on the current mesh is analyzed and regions which are found to be
under-resolved are flagged for refinement when the new mesh is generated. In particular, shock
waves and wakes can be well captured in only a few remeshings. An implicit upwind solver is also
described for computing solutions to the Reynolds-averaged Navier-Stokes equations.

2 Mesh Generation

The mesh generation process for high Reynolds number Navier-Stokes flows is driven by the
need to capture efficiently the thin boundary layers and wakes which occur in these flows. In order
to take advantage of the fact that in these regions normal gradients can be many orders of
magnitude larger than tangential gradients, the mesh needs to be highly stretched. In addition to
control over the stretching, control over the element shape is also desirable. In particular, elements
with very large obtuse angles can lead to accuracy problems and should be avoided [13]. It is here
that techniques which introduce stretching by means of a mapping [4, 14] can have difficulty.

. Ideally, in the anisotropic viscous regions of the flow the elements should be high aspect ratio
nearly right triangles while in the mainly isotropic inviscid regions the elements should be nearly
equilateral triangles. In this work, this is accomplished by first meshing the viscous regions with a
node lifting algorithm and then meshing the remainder of the domain with an advancing front
algorithm. A smooth transition between the two regions is assured by dividing the viscous mesh
into two layers: a viscous layer and a transition layer. The user has full control over the thickness,
the number of points, and the mesh stretching in the viscous layer. The transition layer then serves
as a buffer between the edge of the viscous layer and local isotropy at the edge of the viscous mesh.
The mesh generation process is detailed in the following sections.
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2.1 Geometry Description

The mesh generation procedure begins with a definition of the domain boundaries. In this
work a very flexible approach has been taken whereby the boundary curves are given as the union
of parametric splines. The particular parameterization chosen here is that of chord length along
the spline. Parts of the domain boundary may also be curves describing the locations of wake
centerlines in the flow. For example, these may be obtained by streamline traces from an initial
* solution on a coarse mesh. Each spline is C? on the interior while slope discontinuities are
permitted at the endpoints. This approach allows for the easy description of very complex
multiply-connected domains.

2.2 Surface Mesh Generation

Once the geometry has been defined, the next step is the construction of the surface mesh.
This involves the triangulation of the domain boundaries. In 2-D this means the creation of edges
and nodes on the boundary curves while in 3-D this would involve the construction of a surface
triangulation. Initially each boundary curve is divided into a user-specified number of edges of
nearly equal length by specifying a uniform discretization in parameter space. This serves to
control the maximum spacing which will be allowed. Next each curve is refined based on a
curvature criterion. If the angle formed by the two edges incident to an interior node exceeds a
user-specified tolerance (typically 5°), then these edges and their neighbors are flagged for
refinement. Flagging neighbors as well as the offending edges expands the region of refinement
slightly and produces smoother discretizations. Upon examination of all the nodes, each of the
flagged edges is subdivided into two by placing a new node (on the spline) near the edge midpoint.
The new distribution of nodes is then smoothed by applying a few sweeps of a Laplacian filter in
parameter space. The process is then repeated until the angle criterion is satisfied at every interior
node. The process is guaranteed to converge since the splines are at least C*.

Next the discretization is refined further based on proximity to nearby bodies. The object here

-is to avoid situations in which the local tangential spacing along the curve is large compared to the
distance to a nearby body. In general, if such a situation is allowed to persist, the mesh generator
has no choice but to produce badly shaped: elements. In fact, in extreme situations, it may fail
entirely. Edges which are longer than five times the distance to a nearby body are detected and
refinement proceeds recursively as described above. A provision is also made for the user to specify
the maximum tangential spacing which can be tolerated at specific locations on the boundary
curves. This is useful for clustering points in regions where increased activity is anticipated but is
not otherwise apparent from the geometry alone (e.g., trailing edges).

At this point, since each curve has been discretized independently, the tangential spacings on
either side of a node at which two curves join may differ substantially. This is then remedied by
refining near the endpoint of the curve with the larger spacing until the tangential spacings are
comparable. The surface mesh generation concludes with a final smoothing sweep.

2.3 Volume Mesh Generation

The first step in the volume mesh generation procedure is the construction of the background
grid. The purpose of the background grid is to specify the local (isotropic) element size throughout
the domain. It is constructed by first performing a Delaunay triangulation [15, 16] of the surface
nodes and then converting this to a (local) MinMax triangulation via edge swapping [17]. The
spacing value at each node is taken to be the average length of the incident boundary edges. Linear
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interpolation then provides the spacing function over the whole domain. In most regions of the
domain this works quite well resulting in linear variation in element size from the (usually) finely
discretized inner boundaries to the coarsely discretized outer boundary. However, this
triangulation sometimes produces connections between two widely separated regions of very fine
discretization. This then tends to produce an overly fine mesh in regions where it is not desired.
This situation is easily remedied by inserting a small number of additional control peints into the
Delaunay triangulation prior to the edge swapping to break up these unwanted connections. At
present this is performed by the user upon examination of the background grid, but a procedure to
automate this is under development. This would allow the background grid to be generated
automatically from the surface mesh. We believe this is preferable to the traditional approach of
first requiring the user to provide the background grid from which the surface mesh is then
generated. This is especially true in 3-D where the specification of a background grid which will
yield the desired surface resolution can be difficult.

A preliminary step toward the generation of the viscous mesh is the computation of an average
surface normal for each boundary node. The surface normals at the nodes are computed by looping
over the edges and scattering the contribution due to the edge to each of its two nodes. In order to
handle wake cuts, the edges (and nodes) on the wake cut are first duplicated and added to the list
of edges but with opposite orientation. This in effect creates a two-sided surface which can then be
treated in the standard way. The surface normals are then smoothed with several passes of a
Laplacian filter. This smoothing tends to produce better meshes in regions near surface slope
discontinuities. At the very end of the mesh generation procedure a clean-up utility is called which
removes the duplicate edges and nodes by fusing them with their parents.

With each surface node is associated a local viscous layer thickness, 6,;. When constructing the
initial mesh, this is computed by assuming Blasius boundary layer growth (at the given Reynolds
number) along the surface of each body starting from a user-specified stagnation point location.
Also along any wake curves a similar scaling analysis is used to prescribe an appropriate wake
thickness as a function of position. When incorporated within an adaptive remeshing process, the
viscous layer thickness can be determined from the existing solution. In particular, since
turbulence models are frequently sensitive to the initial y* spacing of the first node off the wall,
this information can be easily incorporated. Three additional global parameters are asked of the
user: n,;, the number of points in the viscous layer, r,;, the stretching ratio in the viscous layer,
and ry, the stretching ratio in the transition layer. Since the stretching ratio is the ratio of the
heights of the cells at successive levels, these form a geometric series whose sum is the local viscous
layer thickness

S(l+ru+ri+. .+ ) =6, (1)
From this the initial height, é;, can then be determined. The heights of cells at successive levels are
then given by
- Tul, N S Nyl
b0 = bns { T, T2 Ny @

Typical ranges for values of the parameters are n,; =10 — 20, r,; = 1.3 — 1.7, and ry = 1.4 — 1.8.
A node lifting process is then used to generate the viscous mesh. This is an advancing front
method where the advancement is node-based rather than face-based. The front is initialized to
consist of the boundary nodes and edges. These nodes are designated as being at level 0.
Advancement begins by selecting a node on the front and marching it out along the local surface
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surface normal

surface normal wake cut

Figure 1: Node lifting example near the trailing edge of an airfoil showing a wake cut.

normal a distance 6;. In the process, two cells, three edges (two of which form faces on the front),
and one node (now at level 1) are created while two faces and one node formally on the front are
deleted (see Figure 1). Once all nodes at the current level have been advanced, the process
continues with nodes on the next level. Advancement terminates at a node if

e a cell of less than unit aspect ratio would be produced, or

e 0, exceeds the local background grid spacing, or

¢ a node forming the base of a new triangle is at a lower level than the node being lifted and
the angle between the base and the normal exceeds a threshold (taken to be 120°), or

e an intersection would occur with another edge on the front.

The viscous mesh about the slat for a Reynolds number of 9 million is shown in Figure 2. Note
how the transition mesh provides a smooth transition from the highly stretched cells in the
boundary layer and wake to local isotropy at the edge of the viscous mesh.

‘SS;\QGQ‘ 5

L\‘k‘

Figure 2: Viscous mesh about a leading-edge slat with a wake.

With the viscous mesh complete, the remainder of the domain is meshed with a traditional
face-based advancing front method [14]. This method builds the mesh one element at a time by
advancing the boundary of the domain inward. Briefly, the procedure is
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¢ initialize the front
o while(there are faces on the front) do

— select a face on the front to be the base of the new element
— obtain the local spacing value from the background grid

— determine the location of a new ‘ideal’ point

— find the nearby nodes and faces on the front

— decide whether to connect with an existing node on the front or introduce the ‘ideal’
point

~ form the new element by updating the data structures

e smooth the mesh with a Laplacian filter.

Efficient implementation of this procedure requires the use of dynamic data structures.
Typically the front is advanced from its shortest face to help prevent larger cells from overlapping
smaller ones. A priority queue of faces which allows efficient insertion and deletion is implemented
using a heap. An alternating digital tree [18] is used to locate nearby nodes on the front. Nearby
faces on the front are then found using node to face pointers. With these data structures the mesh
can be generated in O(N log N) time while incurring minimal storage overhead. Typical volume
mesh generation times are about 35 seconds for a 30,000 node mesh on a 24 MIPS
DECstation 5000/200.

The complete mesh consisting of about 31,300 nodes for a Douglas three-element airfoil at a
Reynolds number of 9 million is shown in Figure 3. In this example, the locations of the wakes off
the leading-edge slat and the main element have been determined by streamline traces from a
coarse grid solution. Both wakes have been tracked to slightly downstream of the airfoil at which
point the wake grids end. '

3 Adaptive Remeshing’

One of the advantages of using an unstructured mesh approach is that it provides a natural
framework for the incorporation of solution-adaptive mesh refinement. In this process, the mesh is
refined locally based on an estimate of the solution error. Since numerical errors tend to be largest
in regions where the solution is changing most rapidly, these are generally good candidates for
refinement. Conversely, in regions showing little activity, the mesh can often be coarsened with
little degradation in solution accuracy. By concentrating mesh points where they are most needed,
high quality solutions can be obtained at reasonable computational cost. An unstructured
approach facilitates this process because its data structure can easily support local refinemerit and
coarsening of the mesh. _ '

In this work, an adaptive remeshing procedure has been adopted. Guided by the solution on
the current mesh, a new mesh is generated which is better suited to capturing the flow features. At
the heart of this procedure is the construction of the background grid which will specify the desired
spacing throughout the domain. Once this has been established, the new surface mesh can be
generated by traversing each spline and discretizing it into line segments whose lengths are given
by the background grid. Note that the surface mesh must be derived from the background grid
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Figure 3: Complete mesh about a Douglas airfoil.

otherwise an inconsistency in the spacing will occur at the domain boundaries. The generation of
the volume mesh may then proceed via the node lifting/advancing front algorithm described
earlier. The current solution is interpolated onto the new mesh as the initial condition for the flow
solver. The solution on the new mesh is then computed and the process repeated if the desired
resolution has not been obtained.

By defining appropriate spacing values at the vertices, the current mesh can serve as the
background grid. By analyzing the current solution, regions requiring more (or less) resolution are
identified. For this purpose, a variety of refinement criteria which detect specific flow features can
be used. Next the current mesh spacing is determined by assigning to each mesh vertex a value
which reflects the average local element size. This spacing value is then modified in accordance
with the selected refinement criteria to produce the background grid. For example, in regions
requiring more resolution the spacing value would be reduced to reflect the fact that smaller
elements are needed. The adaptive remeshing procedure can be summarized as:

while(solution quality is less than desired) do

— construct the spacing function at the vertices of the current mesh
— compute the refinement parameters

— create the background grid by modifying the spacing function in accordance with the
refinement parameters

— generate the new surface mesh using the background grid
— generate the new volume mesh using the background grid
— interpolate the current solution onto the new mesh

— compute the solution on the new mesh.
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For inviscid flows a spacing function on the current mesh can be constructed by assigning to
each of its vertices the average length of the incident edges. This spacing function can then be
smoothed by averaging the value at a vertex with the values at its first-order neighbors. Next the
parameters on which the refinement is to based are computed at the mesh vertices. For inviscid
flow, two parameters which have been found to work well are related to the local divergence and
curl of the velocity field by

11, = |div u| AF (3)
T = |lcurl u|| A (4)

where h; is the local spacing value at vertex ¢ and p (taken here to be 1.5) determines how strongly
the element size influences the refinement. The divergence criterion measures the local
compressibility of the flow and is effective in locating shock waves while the curl criterion measures
the local rotationality of the flow and performs well in locating slip layers. The standard deviations
from zero of the refinement parameters are then calculated from

1 N
o= TV—ZTZJ k=1,2 (5)

=1

where N is the number of nodes in the mesh.

Refinement can then be effected by decreasing the spacing value wherever 73 ; /0y is large.
Conversely, the mesh can be coarsened by increasing the spacing value wherever 74 /0% is small. In
general, the desired spacing value can be written

T
ki = he oo 22) 0
where gy, is a non-increasing function which is 1 for intermediate values of 7 ;/0} and is bounded
away from very large and very small values as 7% ;/0x — 0 and oo respectively. These bounds are
necessary in order to prevent the spacing function, and hence the mesh, from changing too
abruptly from one meshing to the next. Typically, g can be taken to be a simple piecewise linear
function bounded so that 1/4 < g < 2. Obviously different choices of refinement parameter lead to
different values of the desired spacing. It is usually best to take the modified spacing value, k!, to
be the smallest of these values

hi = mkin h;cz (7)

This ensures that all the selected flow features are detected and resolved by the adaption. Linear
interpolation on the triangles is then used to define the modified spacing distribution over the
entire domain. '

A few modifications are necessary when applying this remeshing procedure to a viscous flow.
The spacing value from the current mesh must be constructed so that it is indicative of the local
inviscid mesh scale. For example, in the highly stretched cells in the boundary layers and wakes of
a high Reynolds number flow it is the local tangential mesh scale which the spacing value should
reflect and not the very small normal mesh scale. The reason for this is that near a body or a wake
centerline the purpose of the background grid is to specify the local tangential length scale; the
local normal length scale is specified explicitly by 6,;. An approach that has been found to work
well is to take the spacing to be the average median side length of the triangles incident to the
vertex. In the highly stretched cells in the boundary layers and wakes, this results in an appropriate
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‘streamwise’ length scale. In nearly isotropic portions of the mesh, this reverts to a measure of the
local average side length. While this has performed quite well, other choices are clearly possible.
Due to the highly anisotropic nature of the flow in the boundary layers and wakes, the
refinement criteria must also be modified. In these regions, the refinement. criteria should only
detect the need for local tangential refinement (e.g., along the surface in the case of
shock-boundary layer interaction); the proper normal length scale is accounted for through the

specification of the local viscous layer thickness. A parameter which has been found to work well in
detecting shocks in these situations is

Ti = DPmazi — Pmini hq (8)

Pmazi
where pmini and ppes; are the minimum and maximum values respectively of the pressure at the
vertex and its first-order neighbors and ¢ (taken here to be 0.5) controls the degree to which the
local element size influences the refinement.

Other flow features of interest can be captured by similar means. For example, the large
vortices which occur in the separated flow behind the slat and in the flap well of the three-element
airfoil (and aft of the flap at high angles of attack) are regions where refinement would be
beneficial. Since one distinguishing characteristic of these vortices is that they are regions of
isotropic rotational flow, one might try using the curl criterion. However, although the curl is
relatively large in these areas (on the order of 50), it is much larger in the boundary layer (where it
can exceed 100,000). As it stands, refinement based on the curl would tend to flag the entire airfoil
surface for refinement while leaving the regions of vortical flow undetected. This can be rectified by
replacing k; in the curl refinement criterion with a measure of the smallest local length scale. This
effectively removes the highly stretched cells in the boundary layers and wakes from the
computation of the refinement criterion.

4 Solution Algorithm

The Reynolds-averaged Navier-Stokes equations are discretized in space using a finite volume
scheme in which the unknowns are associated with the mesh vertices and the median dual mesh is
used to define the control volumes. The convective fluxes are evaluated using Roe’s flux-difference
splitting [19]. Higher-order accuracy is achieved by using a piecewise linear reconstruction within
each control volume. A least-squares procedure is used to compute the solution gradients. This
procedure is exact whenever the solution varies linearly over the support of the reconstruction. On
the highly stretched meshes employed in Navier-Stokes computations, the least-squares procedure
is preferable to a Green-Gauss path integration since it appears to be better conditioned. For flows
involving discontinuities, it is necessary to limit the reconstructed gradient so that new extrema are
not created. Experience has shown that it is sufficient to satisfy this condition at the Gauss points
of the flux quadrature (i.e., the edge midpoints). For this purpose the limiter proposed by Barth
and Jespersen is used [20]. The viscous terms are evaluated using a Galerkin finite element
approximation with piecewise linear elements. On a uniform subdivided quadrilateral mesh this
would result in central differencing the viscous terms.

A fully implicit scheme based on a backward Euler linearization of the equations is used to
march to the steady state. The backward Euler method is

Au

A= R(u™*) 9)
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where Au = u™! — u” and R(u) is an operator representing the spatial discretization. The right
hand side is then linearized about u™ resulting in

I OR

(—A—t — 5;;) Au = R(u"). : (10)
This produces a large sparse system of linear equations which needs to be solved at each time step.
Since the support of the higher-order scheme is quite large, consisting of the node and its first- and
second-order neighbors, typically only the first-order scheme is linearized. This also circumvents
the difficulty of linearizing the inherently highly nonlinear limiting procedure. Also due to the
complexity of linearizing Roe’s flux, generally this is only done approximately. Notice that these
approximations do not affect the accuracy at steady state; only the (pseudo) time history is
altered. The no-slip and isothermal wall boundary conditions are made implicit by altering
appropriate rows in the matrix. ‘

In order to try to reduce memory requirements, a Gauss-Seidel relaxation scheme has been
implemented to solve the linear system. This has the advantage of requiring no additional storage
beyond that of the matrix itself and is completely vectorizable by using a coloring scheme. In fact,
if one is willing to recalculate the matrix each subiteration, the matrix need not be stored at all.
However, since the calculation of the matrix is expensive, the required CPU time would increase
substantially. Usually 20 subiterations are performed each time step with a CFL number of 300.
Typical performance is about 280 MFLOPS on one processor of a Cray Y-MP C90 leading to
solution times of about 10-15 minutes for a medium-sized (40,000 node) mesh. The implicit code
with the Gauss-Seidel solver currently requires about 300 words of memory per node. This could
be reduced further by more frugal memory management.

To simulate the effects of fluid turbulence at high Reynolds numbers, the Baldwin-Barth [11]
and Spalart-Allmaras [12] turbulence models have been implemented. These are both one-equation
transport models which solve for a working variable related to the eddy viscosity throughout the
domain. The turbulence model equation is integrated in time using an implicit method similar to
that of the mean flow equations. In order to facilitate the incorporation of different turbulence
models, the mean flow equations and turbulence model equation are decoupled in the time
integration.

5 Results

The results after one remeshing for a computation at M., = 0.20, a = 16°, and Re = 9 x 10°
about the Douglas three-element airfoil are shown in Figure 4. For this calculation the
Spalart-Allmaras turbulence model has been used. The wake emanating from the slat is well
captured and in fact remains distinct from the boundary layer on the main element over almost all
of its length. Although not shown, on the initial mesh (which did not employ wake grids) the
boundary layer which develops on the slat merely ends at its trailing edge without any hint of the
wake which naturally exists downstream. This is a good example of why a remeshing approach to
solution adaption is favored here for these types of flows. If one were to attempt an adaption
strategy based on h-refinement for this case, it is likely that many iterations would be required as
the wake refinement is gradually propagated downstream from the trailing edge of the slat. Also
mesh adaption strategies based on local enrichment have difficulty producing the well-shaped,
highly stretched elements desired for the efficient capture of viscous features. A remeshing strategy,
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Figure 4: Iso-Mach number contours (AM = 0.01) for flow about a Douglas airfoil.

on the other hand, offers the possibility of capturing efficiently many of the flow features in very
few iterations.

Figure 5 show the results after two remeshings for flow at M., = 0.73, a = 2.80°, and
Re = 6.5 x 108 about the RAE 2822 airfoil. The Baldwin-Barth turbulence model has been used in
the computation. The wake centerline has been determined by a streamline trace from the coarse
grid solution. The shock-boundary layer interaction region has been well resolved by the two levels
of solution adaption based on the local relative pressure change. The calculation predicts slight
separation at the base of the shock in agreement with what others have seen for this case with the
Baldwin-Barth turbulence model. The surface pressure distribution also shows good agreement
with experimental data.

6 Conclusions

A method for generating high quality unstructured triangular grids for high Reynolds number
Navier-Stokes calculations about complex geometries has been described. Careful attention has
been paid to resolving efficiently the disparate length scales which arise in these problems. By
dividing the mesh generation task into two phases, both the viscous and inviscid regions of the flow
can be meshed optimally. A solution-adaptive remeshing strategy which allows the mesh to adapt
itself to solution features such as wakes and shock waves has also been described. Although at
present it has only been implemented in two dimensions, the grid generation process has been
designed to be readily extendible to three dimensions. An implicit, higher-order, upwind method
has also been presented for computing compressible turbulent flows on these meshes. Two recently
developed one-equation turbulence models have been implemented to simulate the effects of the
fluid turbulence. High Reynolds number flows about single- and multi-element airfoils have been

presented which clearly demonstrate the improved resolution provided by the solution-adaptive
remeshing,.
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Figure 5: Mesh and Iso-Mach number contours (AM = 0.02) about a RAE 2822 after two remeshings.
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SUMMARY

A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-
Stokes equations in two dimensions has been developed and tested. Grids about geometrically com-
plicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell
encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided “cut” cells
were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure
which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-
adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids
using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner
using a linear reconstruction of the cell primitives, providing the input states to an approximate Rie-
mann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-
volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly
K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for
the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adap-
tively-refined solutions were compared to accepted computational, experimental and theoretical
results.

INVISCID RESULTS

The solution procedure follows that shown in [4]. The Euler equations are solved upon a Carte-
sian-cell generated grid using a cell-centered, finite-volume, upwind formulation. The cell primitive
variables are reconstructed using a linearly K-exact reconstruction that is slope limited, as in [2] and
[3]. For the calculations shown here, Roe’s [11] flux difference splitting is used as an approximate
Riemann solver at the cell-to-cell interfaces. Solution adaptive mesh refinement is performed by sub-
dividing cells according to the refinement criteria developed in [7]. This procedure computes two
parameters, based upon the divergence and curl of the velocity field, which are then weighted by the
cell size, 1. A simple statistical description of these parameters is then used to determine which cells

BLAM 153
oacE /52> INTENTIONALLY BLANK




to refine and coarsen. That is, letting t, = [Veu|l”” and 1, = |VXu[l”* represent parame-
ters that locally describe the compressive and rotational nature of the flow field, cells are refined or
coarsened if the variance of these parameters about zero is beyond some specified threshold. For the
results shown here, cells are refined if

(t.>0, or 1,>0,) and I>1,., €))]

and cells are coarsened if

il d < 2
T<i5 A %<0 2

Experience ([4] and [6]) has dictated the one-tenth scaling of the variance for coarsening, and in
practice, the minimum allowable refineable cell size in (1) is typically taken to be 0.001 chords. In all
of the adaptively-refined computations shown here, the refinement criteria is set exactly as above. For
simplicity, a three-stage, multi-stage scheme is used to advance the equations in pseudo-time, with
stage coefficients A = (0.18, 0.5, 1.0) . A spatially varying time-step is formed using blended hyper-
bolic and parabolic stability constraints.

Test Case 3: Suddhoo-Hall Four-Element Airfoil

This test case geometry corresponds to that shown in [13] where successive Karman-Trefftz trans-
formations were applied to a series of circles in the complex plane, resulting in a high-lift-like set of
four-element airfoil shapes. The geometry has been approximated using the workshop supplied cubic-
splines, and adaptively refined solutions made using the Cartesian, cell-based approach. The free
stream Mach number is M. = 0.2 and the angle of attack is o« = 0°. Three levels of adaptive-mesh
refinement were made beyond the base grid level. The computed surface pressure coefficients for all
the refinement levels are shown along with the geometry in Figure 1. The variation of the computed
lift and drag coefficients through the adaptive mesh refinement is shown in Figure 2. Computations
using the Cartesian approach on a selection of the inviscid test cases are shown in a companion paper
[10].

VISCOUS SOLUTIONS

In [5] and [4] adaptively refined solutions of the Navier-Stokes equations using a Cartesian, cell-
based approach are shown for a selection of low and moderate Reynolds number flows. The viscous
fluxes are found upon each cell interface using a Green-Gauss type of reconstruction performed about
a co-volume located about the interface [4]. The data at the vertices of this co-volume are found in a
linearity preserving manner ([4] and [9]), which guarantees the linear K-exactness of the recon-
structed gradients. To demonstrate the approach, a selection of the results computed in [4] are shown
here.
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Figure 1 Computed surface pressure coefficient data through
adaptive mesh refinement.
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Figure 2 Computed lift and drag coefficients.

Laminar, Driven Cavity Flow: Re=100 and Re=400

The laminar flow inside a square driven cavity is computed and compared to the computed
results of Ghia[8]. In [8], an incompressible formulation of the Navier-Stokes equations was

solved using an implicit multi-grid method, where tabulated u- and v-velocity data were supplied
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along the lines through the geometric center of the cavity. To compare with these incompressible
results, the Mach number used here is taken to be M,, = 0.1. For the Re=100 case, a uniform base
grid of 1024 cells (32 by 32) is generated, and three levels of adaptive mesh refinement beyond the
base grid are obtained. Adaptive mesh refinement improves the solution slightly, but the initial solu-
tion is quite good. Figure 3 shows the computed u- and v-velocity profiles along vertical and horizon-
tal lines through the geometric center of the cavity for the Re=100 case. For the Re=400 case, the
initial solution is poor, but the adaptive-mesh refinement improves the solution quality with each suc-
cessive level of refinement, until an acceptably good solution is obtained at the final refinement level.
Figure 4 shows the computed u- and v-velocity profiles through mesh refinement.
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Figure 3 Computed u- and v-velocities through adaptive-mesh refinement for the
Re=100 driven cavity problem.
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Figure 4 Computed u- and v-velocities through adaptive-mesh refinement for the
Re=400 driven cavity problem.
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Laminar Flow Over a Backward Facing Step

The laminar flow over a backwards facing step at two Reynolds numbers is used to validate
the solver in [4]. The computed results are compared to the experimental data of [1] at the Rey-
nolds numbers of Re=100 and Re=389. A parabolic velocity profile is specified at the inflow, and
the exit pressure is specified. This ensures that the proper pressure gradient is imposed on the
flow. A coarse base grid is generated, and adaptive mesh refinement is made for three subsequent
levels of refinement for both Reynolds numbers. Figure 5 shows the effect of adaptive mesh
refinement at a location corresponding to 2.55 step heights downstream of the step. Comparisons
are made at other locations of the flow in [4]. The results compare well, and are not shown here.
The agreement with the experimental data is good, and the adaptive mesh refinement improves
the solution quality with each refinement.
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Figure 5 Computed u-velocities at 2.55 step heights beyond step for Reynolds
numbers Re=100 and Re=389.

Laminar, Developing Boundary-Layer Flow

The laminar flow over a flat plate which is aligned with the free stream is computed with the
Cartesian solver, and compared to theory. Uniform flow is imposed ahead of the plate leading
edge, and the boundary-layer develops to a location where the Reynolds number based on dis-
tance from the leading edge is Re, = 10, 000. The effect of the introduction of cut cells, with
their inherent non-smoothness, is illustrated by computing this flow on two series of grids. The
first grid sequence is created by orienting the base axes of the Cartesian system coincident with
the plate surface, yielding a base grid with no cell cutting, which is then adaptively-refined. The
second grid sequence is created by rotating the plate surface 30° with respect to the x-axis, intro-
ducing many cut cells along the plate boundary, which also is adaptively refined. ‘

For the axes-aligned cases, when sufficient resolution is supplied, the mean flow profiles com-
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pare very well with theory, although the skin friction exhibits small scale oscillations whenever a
refinement boundary is located near the wall. Figure 6 shows the computed u- and v-velocity profiles
at a location corresponding to Re, = 8000.

80 . T : 3 80
70 b > AMR Lovel ] 70 b o AMR Lovel 0
o AMR Level 1 s AMR Level 1
| 4 AMR Lovel ] 4 AMR Level 2
6.0 — Th 6.0+ —— Theory
50 L ] 50 |
o
N 4 40 "5
n
o
30 ] 30t -
20 ¢ E 20
10+ 4 10 |
0.0 . : : 1 . A . \
0.0 0.2 0.5 0.8 1.0 0'ﬂo.o 0.2 05 0.8 1.0
u/'u,, ¢.(M)

Figure 6 Predicted u- and v-velocity profiles for axes-aligned flat plate.

The grid non-smoothness induced on the non-axes aligned grid caused convergence problems,
which was alleviated by using a local modification to the viscous gradient reconstruction procedure in
cut cells and their neighbors. The computed u- and v-velocity profiles, shown in Figure 7, compared
moderately well to theory, but the skin friction exhibit large scale oscillations.
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Figure 7 Predicted u- and v-velocity profiles for non-axes-aligned flat plate

The oscillations induced by the extreme grid non-smoothness caused by the cut cells is indicative of
the sensitivity of current viscous flux functions to grid smoothness. This sensitivity is highlighted by
the grids generated using the Cartesian approach, since extremely non-smooth grids are created near
walls, where the shear is typically high. The result of this is typically oscillations in the skin friction
and heat transfer rates, and due to the non-positivity of the viscous operators, the convergence can be
adversely effected. Regardless of these negative findings, the approach can still prove useful in per-
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forming automated grid generation and adaptive mesh refinement upon more geometrically and
dynamically complicated flows, as is shown in the next example.

Simulated Branched Duct

To demonstrate the approach for complex geometries, the flow in a stylized duct is computed.
This duct geometry corresponds to an experiment conducted at NASA LeRC designed to simulate, in
a simplified manner, the flow in the cooling passages of a turbine blade [12]. The calculations shown
here in no way try to simulate the experiment: The experimental conditions correspond to a turbulent
flow, while the calculations shown here are laminar. A fully developed profile is introduced at the
inflow, and the flow is diverted into the primary passage by the blockage introduced by the pin fins in
the secondary passage. The Reynolds number based on maximum inflow velocity and pin fin diame-
ter is Re=25. Only one level of adaptive-mesh refinement beyond the base grid level is obtained, due
to positivity problems in the rear stagnation region of one of the pin fins. The final adapted grid and
contours of total velocity are shown in Figure 8 and Figure 9.

IEEEEANESEBENEEN NN AN

Hlll IEESEEEESEN RS NN

Figure 9 Computed total velocity contours.

The basic flow features predicted here correspond to those in the experiment, although some
important features are grossly under-resolved, such as the individual pin-fin wakes. The primary pas-
sage separation and reattachment along the splitter plate and the separation anchored at the back step
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portion are both properly predicted, as well as the upstream influence of the pin blockage upon the
lower wall flow. Although many levels of refinement were not achieved, the larger scale flow features
were adequately predicted and there resolution was improved by the mesh refinement procedure.

CONCLUSIONS

Adaptively-refined solutions of the Euler and Navier-Stokes equations using a Cartesian, cell-
based approach have been made. Inviscid computations corresponding to test case 3 of the workshop
compared favorably with theory. The emphasis here has been upon the extension of the Cartesian,
cell-based method to computing viscous flows. Adaptively-refined solutions of the Navier-Stokes
equations have been made, and the results compared well to accepted computational, experimental
and theoretical data. An inherent weakness of the Cartesian approach is brought forth, that is directly
tied to one of the properties that makes the approach useful: The Cartesian approach sacrifices grid
smoothness for automation of the mesh generation. This grid non-smoothness is not handled well by
the current generation viscous flux functions, which tend to produce non-positive and inaccurate sten-
cils upon distorted grids. Regardless of this comparatively negative finding, the approach has proven
to be useful, and can provide accurate, automatically meshed and adaptively-refined solutions of the
Euler and Navier-Stokes equations.
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